苏州二叶制药有限公司 全球 CMC 生产及研发中心项目 竣工环境保护验收监测报告

苏州二叶制药有限公司 2023 年 9 月 建设单位: 苏州二叶制药有限公司

法人代表: 张健

项目联系人:徐军

编制单位: 苏州二叶制药有限公司

法人代表: 张健

项目联系人:徐军

建设单位

联系人员:

电话:

地址: 苏州市相城区黄埭镇东桥安民路2号

编制单位

联系人员:

电话:

地址: 苏州市相城区黄埭镇东桥安民路2号

目 录

1	项目标	既况1	Ĺ
	1.1	项目验收背景	l
	1.2	项目基本情况	l
	1.3	自主验收工作过程	2
	1.4	验收范围与内容	2
2	验收值	衣据1	
	2.1	建设项目环境保护相关法律、法规和规章制度1	Ĺ
	2.2	建设项目竣工环境保护验收技术规范2	2
	2.3	建设项目环境影响报告表及其审批部门审批决定2	2
3	项目建	建设情况1	
	3.1	地理位置及平面布置1	L
	3.2	建设内容1	L
	3.3	主要原辅材料及燃料10)
	3.4	水源及水平衡12	2
	3.5	研发工艺12	2
		3.5.1 合成实验中心	2
		3.5.2 制剂实验中心	5
		3.5.3 工程中心	6
	3.6	项目变动情况16	6
		3.6.1 变动内容分析16	Ó
		3.6.2 重大变动判断19)
4	环境值	保护设施21	Ĺ
	4.1	污染物治理/处置设施	Ĺ
		4.1.1 废水	Ĺ
		4.1.2 废气	2
		4.1.3 噪声	5
		4.1.4 固 (液) 体废物	5
	4.2	其他环境保护设施42	2
		4.2.1 环境风险防范设施	2

		4.2.2 规范化排污口、监测设施	43
	4.3	环保设施投资及"三同时"落实情况	46
5	环境影	影响报告表主要结论与建议及其审批部门审批决定	48
	5.1	环境影响报告表主要结论与建议	48
	5.2	审批部门审批决定	48
6	验收扫	丸行标准	52
	6.1	废水	52
	6.2	废气	52
	6.3	噪声	53
	6.4	总量控制指标	53
7	验收上	监测内容	55
	7.1	废水	55
	7.2	废气	55
		7.2.1 有组织排放	55
		7.2.2 无组织排放	56
	7.3	厂界噪声监测	57
8	质量值	保证和质量控制	59
	8.1	监测分析方法	59
	8.2	监测仪器	60
	8.3	水质监测分析过程中的质量保证和质量控制	61
	8.4	气体监测分析过程中的质量保证和质量控制	61
	8.5	噪声监测分析过程中的质量保证和质量控制	61
9	验收上	监测结果	62
	9.1	生产工况	62
	9.2	环保设施调试运行效果	65
		9.2.1 废水	65
		9.2.2 废气	66
		9.2.3 噪声	82
		9.2.4 固废	82
		9.2.5 污染物排放总量核算	. 82

	9.3 环评批	k复执行情况检查	86
10	验收监测结	i论	88
	10.1 结论.		88
	10.1.1	废水监测结果	88
	10.1.2	废气监测结果	88
	10.1.3	噪声监测结果	89
	10.1.4	固体废物	89
	10.1.5	总量控制	89
	10.2	俭收项目与《建设项目竣工环境保护验收暂行办法》相符性分析	89
	10.3 建议		90
11	建设项目竣	工环境保护"三同时"验收登记表	90

附图

- 附图 1 地理位置图
- 附图 2 周边环境概况图
- 附图 3 厂区平面布置图
- 附图 4 厂区雨污水管网图
- 附图 5 本项目与苏州市相城区生态空间管控区域的位置关系

附件

- 附件1 本项目立项备案文件
- 附件2本项目环评批复
- 附件 3 营业执照
- 附件4竣工及调试运行公示截图
- 附件 5 排污许可证
- 附件 6 生产工况记录单
- 附件 7 危险废物处置合同
- 附件8一般固废委托合同
- 附件9 生活垃圾清运协议
- 附件 10 污水接管协议
- 附件11 应急预案备案表
- 附件 12 验收检测报告
- 附件13 变动分析公示截图
- 附件14 其他需要说明的事项

1 项目概况

1.1 项目验收背景

苏州二叶制药有限公司建于1946年(当时名称为苏州第二制药厂,以下称"公司"), 现位于苏州市相城区黄埭镇东桥安民路 2 号是复星医药集团旗下的全资子公司,目前生 产以青霉素原料药、青霉素粉针制剂、头孢粉针制剂为主的药品。

依据国家产业政策和集团战略指引,为持续推进产品研发效率和企业创新能力的提升,公司利用现有约 9000m² 生产用房(原青霉素粉针车间和综合制剂楼一楼西侧成品仓库;本项目建成后,青霉素粉针产能淘汰)建设成全球 CMC 苏州生产及研发中心,即"苏州二叶制药有限公司全球 CMC 生产及研发中心项目"。

本次为"苏州二叶制药有限公司全球 CMC 生产及研发中心项目"的竣工环境保护验收。本项目合成实验中心、制剂实验中心研发的产品均为小试规模,工程中心只进行制剂工艺研发,研发规模为中试,不商业化销售。研发目标和成果:对药品的生产工艺、杂质、质量、稳定性进行研究,为产品的注册上市提供测试样品和相关技术资料。

1.2 项目基本情况

本验收项目基本情况见表 1.2-1,环评评价与验收范围对照情况见表 1.2-2。

项目	内容
项目名称	苏州二叶制药有限公司全球CMC生产及研发中心项目
性质	改建
建设单位	苏州二叶制药有限公司
建设地点	苏州市相城区黄埭镇东桥安民路2号 厂区中心坐标: 120°29′E、31°25′N
环评报告书编制单位	江苏虹善工程科技有限公司
环评审批部门	苏州市生态环境局
审批时间及文号	2021年12月17日,苏环建[2021]07第0032号
验收监测单位	江苏裕和检测技术有限公司、泰科检测科技江苏有限公司
验收监测报告编制单位	苏州二叶制药有限公司
环保设施竣工时间	2023年3月23日
环保设施调试起止时间	2023年3月24日
申领排污许可证情况	排污许可证已重新申请(许可证编号: 913205001377026284001P) 有效期限: 2023年7月28日~2028年7月27日

表 1.1-1 验收项目基本情况

表1.1-2 环评及验收范围对照表

序		环评/审批项	目内容	本次验收内容		
号	产品名称	建设内容	设计能力	产品名称	建设内容	设计能力
1						

序	环评/审批项目内容			本次验收内容			
号	产品名称	建设内容	设计能力	产品名称	建设内容	设计能力	
2							
3							
4							
5							
6							
7							
8							

1.3 自主验收工作过程

苏州二叶制药有限公司成立验收工作组,由总经理担任组长,根据生产工况安排、监测单位监测能力,验收组委托有资质的监测单位于 2023 年 5 月 5 日~19 日对验收项目进行了现场验收监测。根据建设项目竣工环境保护验收技术规范、环评报告及批复、项目实际建设情况、检测结果、国家及地方环境保护相关要求以及其他有关资料,编制完成《苏州二叶制药有限公司全球 CMC 生产及研发中心项目竣工环境保护验收监测报告》,作为本次验收报告的组成部分,为项目竣工环境保护验收及环境保护管理提供依据。

1.4 验收范围与内容

本次验收范围与内容包括:

- (1) 环保手续履行情况:
- (2)项目建成情况,包括建设性质、规模、地点,主要生产工艺、产品及产量、原辅材料消耗,主体工程、辅助工程、公用工程、储运工程和依托工程内容及规模等;
- (3)环保设施建设情况,包括实际环保投资,污染物治理设施,环境风险防范等设施的建设、调试、管理及其效果;
 - (4) 建设项目变动情况。

2 验收依据

2.1 建设项目环境保护相关法律、法规和规章制度

- (1) 《中华人民共和国环境保护法》,2015年1月1日实施;
- (2) 《建设项目环境保护管理条例》,2017年10月1日实施;
- (3) 《排污许可管理条例》国务院令 第736号, 自2021年3月1日起施行;
- (4)《国家危险废物名录》(2021 年版),环境保护部令第 39 号,2016 年 8 月 1 日 实施;
 - (5) 《建设项目竣工环境保护验收暂行办法》,国环规环评[2017]4号;
 - (6) 《建设项目竣工环境保护验收管理办法》,2010年修改;
- (7) 《排污许可管理办法(试行)》,环境保护部令第 48 号,2019 年 8 月 22 日 修改;
 - (8) 《固定污染源排污许可分类管理名录(2019年版)》,生态环境部令第 11 号;
- (9)《关于强化建设项目环境影响评价事中事后监管的实施意见》,环环评[2018]11 号;
 - (10) 《江苏省排污口设置及规范化整治管理办法》,苏环控[97]122号;
 - (11) 《关于加强建设项目竣工环境保护验收监测工作的通知》, 苏环监[2006]2 号;
 - (12) 《关于建设项目竣工环境保护验收有关事项的通知》, 苏环办[2018]34 号;
 - (13)《关于委托部分建设项目竣工环境保护验收的通知》, 苏环办[2016]326号;
- (14) 关于印发制浆造纸等十四个行业建设项目重大变动清单的通知,环办环评 (2018) 6号;
 - (15)《污染影响类建设项目重大变动清单(试行)》,环办环评函(2020)688号;
- (16)《江苏省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》, 苏环办〔2021〕122号:
- (17)《江苏省挥发性有机物污染防治管理办法》(省政府令第 119 号),2018 年 5 月 1 日起施行;
- (18)《省生态环境厅关于印发<江苏省危险废物贮存规范化管理专项整治行动方案>的通知》,苏环办[2019]149号;
 - (19) 《关于进一步加强危险废物污染防治工作的实施意见》(苏环办[2019]327号);

- (20)《关于进一步加强危险废物污染防治工作的实施意见》(苏环办字[2019]222 号);
 - (21) 《危险废物贮存污染控制标准》(GB18597-2023);
 - (22) 《危险废物识别标志设置技术规范》(HJ 1276-2022);
 - (23)《危险废物管理计划和管理台账制定技术导则》(HJ1259-2022);
- (24)《环境保护图形标志—固体废物贮存(处置)场》(GB15562.2-1995)修改单:
- (25)《省生态环境厅关于做好<危险废物贮存污染控制标准>等标准规范实施后危险废物环境管理衔接工作的通知》(苏环办[2023]154号)。

2.2 建设项目竣工环境保护验收技术规范

- (1)《建设项目竣工环境保护验收技术指南 污染影响类》,生态环境保护部公告 2018 年第 9 号;
- (2)《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》,环办[2015]113号。

2.3 建设项目环境影响报告表及其审批部门审批决定

- (1)《苏州二叶制药有限公司全球 CMC 生产及研发中心项目环境影响报告表》, 江苏虹善工程科技有限公司,2021年9月;
- (2)《关于苏州二叶制药有限公司全球 CMC 生产及研发中心项目环境影响报告表的批复》,苏环建[2021]07 第 0032 号。

3 项目建设情况

3.1 地理位置及平面布置

苏州二叶制药有限公司位于苏州市相城区黄埭镇东桥安民路2号(120°29′E、31°25′N),项目地理位置见附图1。

苏州二叶制药有限公司西北面为友成模具园、北面为优霹耐磨复合材料公司,东面为东浒河,南面为安民路,西面为嘉乐威新材料,企业周边500m范围现状见附图2。

本项目建设了7根排气筒,其中DA010~015排气筒位于研发楼楼顶,高度均为17m; DA016排气筒位于工程楼楼顶,高度20m。噪声源主要为研发用离心机、整粒机、气流粉碎机以及环保设备配套的风机等机械噪声。厂区平面布置见附图3。

本项目依托厂区内现有厂房进行改建,依托现有雨、污排水管网及排口。公司全厂 共设有1个污废水总排口,位于厂区东北侧;1个雨水排口,位于厂区南侧。公司雨污水 管网见附图4。

3.2 建设内容

验收项目基本建设内容对照情况见表3.2-1。

序号	类型	环评/审批项目内容	项目建设情况	批建一致性
1	建设单位	苏州二叶制药有限公司	苏州二叶制药有限公司	一致
2	项目性质	改建	改建	一致
3	建筑面积	6286m ² +2600m ²	6286m ² +2600m ²	一致
4	职工人数	136人	136人	一致
5	全年工作时间	年工作2400h	年工作2400h	一致
6	工作班制	年工作300d,每天8h	年工作300d,每天8h	一致
7	总投资	11000万元	11000万元	一致
8	环保投资	550万元	550万元	一致

表3.2-1 项目建设情况对照表

本项目研发方案对照情况见表3.2-2。改建后,原研发楼的0.66亿支/年的青霉素粉针 剂产能淘汰。

环评设计 实际建设 批建 工程 产品 产品 工程 致性 研发能力 工艺 工艺 研发能力 名称 名称 名称 名称 2 一致 3

表3.2-2 项目研发方案建设情况对照表

序		环评设计			实际建设				掛建
号	工程 名称	产品 名称	工艺	研发能力	工程 名称	产品 名称	工艺	研发能力	批建 一致性
5									
6									一致
7									
8									.zh
9									一致
10									
11									一致
12									

本项目研发产品均为测试样品,不商业化销售,在取得研发参数后均作为危险废物 委托有资质单位处理,其中化学合成产品为袋装或瓶装,固体制剂产品为袋装或瓶装,液体制剂产品为瓶装,包装规格按具体研发工艺要求。合成实验中心、制剂实验中心均 为小试规模,工程中心只进行制剂工艺研发,达到制剂中试规模,其原料包括小试样品和外购原料。

经对照,本次验收实际研发能力、规模满足环评设计要求。

本项目主体工程由现有青霉素粉针车间和综合制剂楼一楼西侧成品仓库改建,现有建筑主体结构不变,不含土建工程,改造内容主要为:依据研发实验用户需求信息,重新规划、设计该建筑物内部空间的功能布局、隔断设置、室内装修与机电系统,并按施工图组织建造。改建、新建、依托的主体及公辅工程对照情况见表3.2-3;经现场对照,本项目主要生产设备见表3.2-4。

表3.2-3 主体、公用及环保工程建设情况对照表

- 1		环评内容	一	建设情况		
类别	设施名称	设计能力	设施名称	建设情况		
主体工程	Ξ.				一致	
土净土机	±				一致	
辅助工程	星				一致	
					一致	
贮运工程	星				一致	
					一致	
					一致	
					一致	
					一致	
					一致	
公用工程	星				一致	
					一致	
					一致	
					一致	
					一致	
					仅总排风 量变小	
TT /U					仅总排风 量变小	
环保 皮气	处理				仅总排风 量变小	
					一致	

赤山	环评内容		建设情况		
类别 —	设施名称	设计能力	设施名称	建设情况	
				共用排气筒 DA014,内径 0.7m,高 17m, 排风量 16000m³/h	增废 一 处置 一 处置 一
					废 增废 增废 加一
废水处理					废气 处 装置 一到
灰					一到
固废					一至 一至
					一至
雨污					一到
排放口					一到

类	다		环评内容		建设情况	批建
 	カリ	设施名称	设计能力	设施名称	建设情况	一致性
	事故 立急池					一致

注: "过滤器F7"、"过滤器H13"分别代表不同的过滤级别,"F7、H13"为过滤器的级别分类编号; "活性炭1#~18#"为顺序编号,跟活性炭性能无关。

表3.2-4 本项目主要设备实际建设情况对照表

序号	建设单元	设备名称	规格型号	环评(台/套)	实际建设(台/套)	变化(台/套)
1						0
2						0
3						0
4						0
5						0
6						0
7						0
8						0
9	合成实验室					0
10	口风关视王					0
11						0
12						0
13						0
14						0
15						0
16						0
17						0
18			-			0

序号	建设单元	设备名称	规格型号	环评(台/套)	实际建设(台/套)	变化(台/套)
19						0
20						0
21						0
22						0
23						0
24						0
25						0
26						0
27						0
28						0
29						0
30						0
31						0
32						0
33						0
34						0
35						0
36						0
37						0
38						0
39						0
40						0
41	制剂实验室					0
42	刚刚头视至					0

序号	建设单元	设备名称	规格型号	环评(台/套)	实际建设(台/套)	变化(台/套)
43						0
44						0
45						0
46						0
47						0
48						0
49						0
50						0
51						0
52						0
53						0
54						0
55						0
56						0
57						0
58						0
59						0
60						0
61						0
62						0
63						0
64						0
65						0
66						0

序号	建设单元	设备名称	规格型号	环评(台/套)	实际建设(台/套)	变化(台/套)
67						0
68						0
69						0
70						0
71						0
72						0
73						0
74						0
75						0
76						0
77						0
78						0
79	分析实验室					0
80						0
81						0
82						0
83						0
84						0
85						0
86						0
87						0
88						0
89	工程中心					0
90						0

序号	建设单元	设备名称	规格型号	环评(台/套)	实际建设(台/套)	变化(台/套)
91						0
92						0
93						0
94						0
95						0
96						0
97						0
98						0
99						0
100						0
101						0
102						0
103						0
104						0
105						0
106						0
107						0
108						0
109						0
110						0
111						0
112	<i>></i>		**************************************			0

备注: 1、旋转整粒机、气流粉碎机、锤式粉碎机、振荡筛粉机、干法制粒机等设备自带除尘装置。

2、上述研发设备均为共用设备,选用的研发设备均为中小型设备,设备规格和研发批量相适应。

经对照,较环评设计,实际建设时废气处理系统发生了变动:

- ①增加了4套"过滤器F7+活性炭吸附装置"、2套"过滤器F7+过滤器H13+活性炭吸附装置",该变动不涉及新增废气产生节点,仅是原设计合并处理的废气支管实际建设时未进行合并,而是分别处理后再合并经原设计排气筒排放,未改变废气处理工艺。
- ②风量较环评发生了变化。废气系统采用调频风机,一直为启用状态。实际建设时,根据研发工作确定了最大同时启用的风机数明确了各排气筒最大风量。

其他实际建设内容、设备与环评设计一致,未发生变动。

3.3 主要原辅材料及燃料

本项目主要原辅料设计用量、监测期间消耗量见表3.3。

序号 环评年消耗量 实际年消耗量 名称 规格、组分

表3.3 主要原辅料消耗情况表

序号	名称	规格、	组分	环评年消耗量	实际年消耗量
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52					
53					
54					
55					
56					
57					
58					
59					
60					
61					
62					
63					
64					

3.4 水源及水平衡

二叶公司的自来水由区域自来水市政管网供给。

根据验收监测期间项目用水量,验收项目水平衡见图3.4-1。

图 3.4-1 本验收项目水平衡图(单位: t/a)

本项目建成后,全厂水平衡见图3.4-2。(肝素钠项目处于同步调试运行阶段,水平 衡已包含该项目)

图 3.4-2 全厂水平衡图 (单位: t/a)

3.5 研发工艺

3.5.1 合成实验中心

合成实验中心的原料药研发类型主要为精神类药物、止疼类药物、抗感染药物和抗 真菌药物等,每个类型可涉及多个药物,以每个类型的代表性药物进行介绍并归纳得到 通用研发工艺及产污环节。

(1) 精神类药物(代表性药物:布瓦西坦原料药)

①化学反应方程式

②工艺简介

(2) 止疼类药物(代表性药物: 噁拉戈利钠原料药)

①化学反应方程式

②工艺简介

0

(3) 抗感染药物(代表性药物:磷霉素氨丁三醇原料药)

①化学反应方程式

②工艺简介

0

(4) 抗真菌药物(代表性药物: 泊沙康唑)

①化学反应方程式

②工艺简介

0

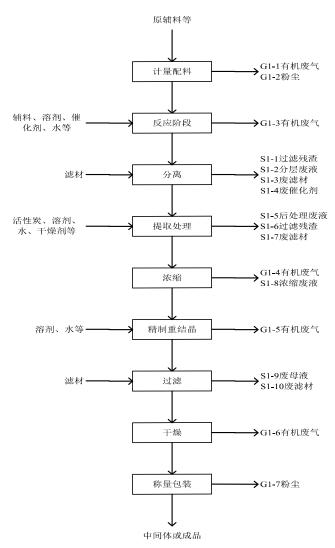


图 3.5-1 化学合成工艺流程图

化学合成工艺流程描述:

3.5.2 制剂实验中心

制剂研发方向分为固体制剂和液体制剂。

固体制剂工艺流程见图 3.5-2,包括湿法造粒、干法造粒、直接混合;液体制剂工艺流程见图 3.5-3,包括终端灭菌、冻干工艺。

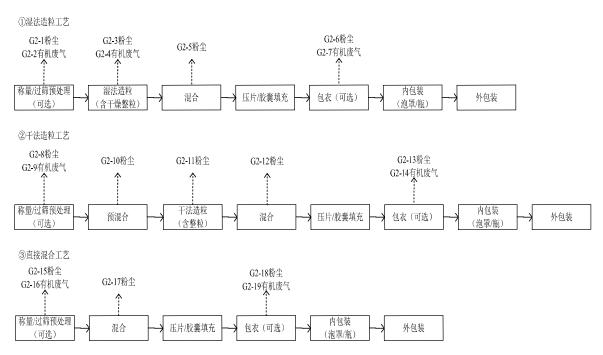


图 3.5-2 固体制剂工艺流程图

④终端灭菌工艺

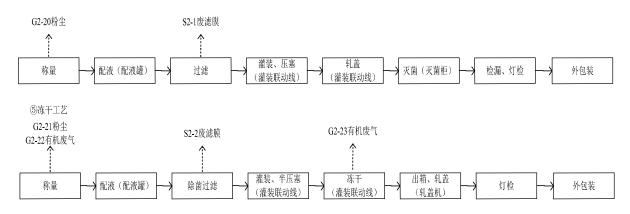


图 3.5-3 液体制剂工艺流程图

3.5.3 工程中心

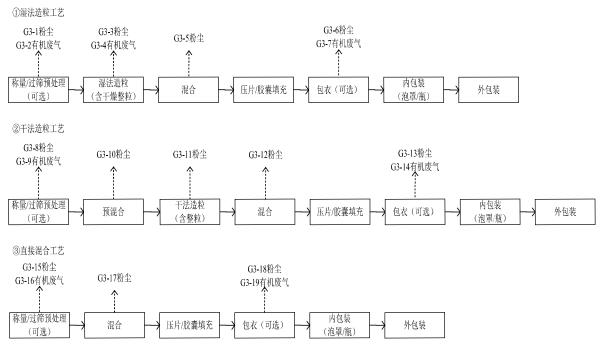


图 3.5-4 工程中心固体制剂工艺流程图

上述大部分固体制剂研发取得相应数据参数后,产生报废制剂 S3-1,小部分作为测试样品消耗。

3.6 项目变动情况

3.6.1 变动内容分析

(1) 增加6套废气处理装置

环评设计建设12套废气处理装置,实际建设时,较环评设计增加了6套,包括4套"过滤器F7+活性炭吸附装置"、2套"过滤器F7+过滤器H13+活性炭吸附装置"。实际建设与环评设计的废气处理装置处理范围对照情况见表3.6-1。

	秋3.0-1 天		及《处理农且处》	生化四 处水	•
序	处理范围	处理装置名	路 称及工艺	对应排气筒	编号、高度
号	火 连拉围	环评设计	实际建设	环评设计	实际建设
1					
2					
3					
4					
5					
6					

表3.6-1 实际建设与环评设计的废气处理装置处理范围一览表

7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			

根据表3.6-1,实际建设时,未新增废气产生节点,只是对于反应间、试剂暂存间、湿法造粒间、包衣-1、湿法造粒室等环评已识别的废气节点,原设计收集后的支管合并后进对应的废气处理装置,实际建设时根据楼层高度、废气管道布局等改为经对应废气处理装置处理后再合并经原设计排气筒排放。

改动前后废气处理工艺未发生变化、未新增废气排气筒、也未新增废气污染物产排量,在此基础上,废气处理负荷不发生变化,相关过滤器、活性炭的更换周期较原设计减少一半,但需更换的废气设备数量增加了一倍,故最终产生的废过滤器、废活性炭量较环评设计一致。

(2) 排气筒排风量较环评发生了变化

各排气筒的排风量变化情况见表3.6-2。

表3.6-2 实际建设与环评设计的排气筒排风量对比情况

序号	排气熔炉具 官府	排风量	(m ³ /h)	变化原因
万万	排气筒编号、高度	环评设计	实际建设	文化原囚
1				
2				
3				
4				
5				
6				
7				/

根据表3.6-2,实际建设时,排气筒的数量、高度较环评设计未发生变化,仅 DA010~012、DA014~015排气筒的排风量发生了变化。 本项目废气的特点是风量大、浓度低。对于DA010~012排气筒对应的实验室,经调试测试,通风橱等废气收集点可以通过控制操作位的敞口面积,改变废气收集量,即在不影响操作的情况下,当敞口面积较小时,既可以减少通风橱内废气污染物经敞口向外的逸散量,又可减少对实验室内环境废气的无效收集(实验操作在通风橱内进行时,废气经通风橱收集;在其他位置操作时,产废气节点均设有对应的集气罩。故实验室废气已实现应收尽收,环境废气污染物含量极少)。同时,根据调试运行期间的实际实验操作需求、排班,调整了实际最大同时启用的集气装置数量,重新核算了最大排风量。上述措施,较原环评,废气排风量有所降低,在一定程度上提高了废气处理装置进口的污染物浓度,对于风量大、浓度低的废气,可一定程度上发挥废气处理装置的处理效果。

对于DA014~015排气系统,DA014对应的废气处理装置系统较环评设计增加了4套 废气处理装置,DA015对应的废气处理装置系统较环评设计增加了2套废气处理装置, 为保证废气在系统内的流速,确保废气正常排放,废气排风量有一定程度的增加,但未 新增产废气节点、不新增相关化学品的消耗量。

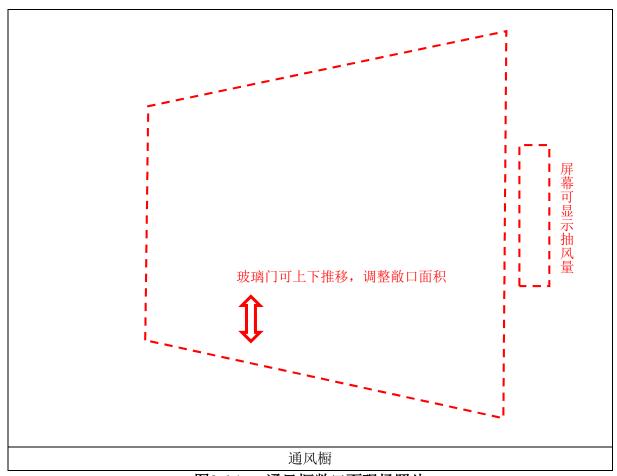


图3.6.1 通风橱敞口面现场照片

3.6.2 重大变动判断

根据《江苏省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》苏环办〔2021〕122 号、《制药建设项目重大变动清单(试行)》(环办环评[2018]6 号)、《污染影响类建设项目重大变动清单(试行)》(环办环评函〔2020〕688 号),上述变动内容不属于重大变动,为一般变动。

表 3.6-3 项目变动情况判断(对照制药建设项目)

类别	序号	制药建设项目重大变动清单	现有项目建设情况	重大变 动判定
规模	1	中成药、中药饮片加工生产能力增加50%及以上;化学合成类、提取类药品、生物工程类药品生产能力增加30%及以上;生物发酵制药工艺发酵罐规格增大或数量增加,导致污染物排放量增加。	本项目实际建成的研发方 案不变,与环评设计一致。	不属于
建设地点	2		本项目建设位置与环评一 致。	不属于
生产工艺	3	生物发酵制药的发酵、提取、精制工艺变化,或化学合成类制药的化学反应(缩合、裂解、成盐等)、精制、分离、干燥工艺变化,或提取类制药的提取、分离、纯化工艺变化,或中药类制药的净制、炮炙、提取、精制工艺变化,或生物工程类制药的工程菌扩大化、分离、纯化工艺变化,或混装制剂制药粉碎、过滤、配制工艺变化,导致新增污染物或污染物排放量增加。		不属于
	4	新增主要产品品种,或主要原辅材料变化导致新增污染物或污染物排放量增加。	本项目实际建成的研发方 案不变,不新增研发种类, 研发过程消耗的原辅料种 类与环评设计一致。	不属于
	_	废水、废气处理工艺变化,导致新增污染物或污染物排 放量增加(废气无组织排放改为有组织排放除外)。	共增加6套废气处理装置, 未改变原废气处理工艺, 属于污染防治措施改进, 不会导致新增污染物或污 染物排放量增加。废水污 染防治措施未发生变动。	不属于
环境 保护	6	排气筒高度降低10%及以上。	实际建设的排气筒高度与 环评设计一致。	不属于
措施	' /	新增废水排放口;废水排放去向由间接排放改为直接 排放;直接排放口位置变化导致不利环境影响加重。	排放万式不受,接官口位 置不变。	
	8	风险防范措施变化导致环境风险增大。	按环评要求建设了相关风 险防范措施,不会导致境 风险增大。	
	u	危险废物处置方式由外委改为自行处置或处置方式 变化导致不利环境影响加重。	本项目固废处置方式与环 评一致,保持不变。	不属于

表 3.6-4 项目变动情况判断(对照污染影响类建设项目)

类别	序号	污染影响类建设项目重大变动清单	现有项目建设情况	重大变 动判定
性	1	建设项目开发、使用功能发生变化的。	本项目研发方案不变,开发、	不属于

类别	序号	污染影响类建设项目重大变动清单	现有项目建设情况	重大变 动判定
质			使用功能未变化。	
	2	生产、处置或储存能力增大30%及以上的。	生产、处置或储存能力不变。	不属于
	3	生产、处置或储存能力增大,导致废水第一类污染物排放量增加的。	不涉及。	不属于
规模	4	位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的(细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物;臭氧不达标区,相应污染物为氮氧化物、挥发性有机物;其他大气、水污染物因子不达标区,相应污染物为超标污染因子);位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加10%及以上的。	本项目大气、水污染物排放量 不超过环评及批复量。	不属于
地点	5	重新选址;在原厂址附近调整(包括总平面布置变化) 导致环境防护距离范围变化且新增敏感点的。	与环评一致。	不属于
生产工艺		新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形之一: (1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加10%及以上的。	本项目研发实验种类、研发工 艺不变, 研发过程消耗的主要 原辅材料、燃料不变。	不属于
	. /	物料运输、装卸、贮存方式变化,导致大气污染物无组 织排放量增加10%及以上的。	物料运输、装卸、贮存方式不 变,大气污染物无组织排放量 不变。	
	8	废气、废水污染防治措施变化,导致第6条中所列情形之一(废气无组织排放改为有组织排放、污染防治措施强化或改进的除外)或大气污染物无组织排放量增加10%及以上的。	染防治措施改进,不会导致第6条所列情形,且不会增加无组织排放量。废水污染防治措施未发生变动。	不属于
环	9	新增废水直接排放口;废水由间接排放改为直接排放;废水直接排放口位置变化,导致不利环境影响加重的。	方式不变,排放口位置不变。	不属于
境保护		新增废气主要排放口(废气无组织排放改为有组织排 放的除外);主要排放口排气筒高度降低10%及以上的 。	1大新增排气管,水洗及主要排	不属于
措施		噪声、土壤或地下水污染防治措施变化,导致不利环境 影响加重的。	本项目噪声、土壤或地下水污 染防治措施不变。	不属于
	12	固体废物利用处置方式由委托外单位利用处置改为自 行利用处置的(自行利用处置设施单独开展环境影响 评价的除外);固体废物自行处置方式变化,导致不利 环境影响加重的。	一致,保持不变。	小 属士
	13	事故废水暂存能力或拦截设施变化,导致环境风险防 范能力弱化或降低的。	本项目废水暂存能力或拦截 设施不变化,环境风险防范能 力不降低。	

4 环境保护设施

4.1 污染物治理/处置设施

4.1.1 废水

本项目依托厂区现有排水管网,实行清污分流、雨污分流。

本项目废水主要为工艺水制备浓水(即纯水装置制备浓水)、合成实验中心设备清洗废水、制剂实验中心设备清洗废水、制剂实验中心洗瓶废水、工程中心设备清洗废水及生活污水,不含氮磷,经污水管网收集进入厂区内现有污水处理站预处理后,接管苏州市相城区东桥集中污水处理厂处理,处理达标后排放东浒河,最终排入京杭大运河。擦洗、冲洗含氮磷的物料和溶剂而产生的有机溶剂清洗废液作为危废处理。

表4.1.1 本项目废水产生及治理措施表

一	工人们工门地区
种类	采取的处理方式及去向
生活污水	
工艺水制备浓水	
合成实验中心设备清洗废水	排入企业污水处理站,经调节池 2+好氧处
制剂实验中心设备清洗废水	理排入东桥污水处理厂
制剂实验中心洗瓶废水	
工程中心设备清洗废水	

本项目废水处理装置现场照片见图4.1.1。

调节池2(进好氧处理装置)	贮水池

废水总排口	废水总排口在线监测

图4.1.1 废水处理装置及排放口照片

4.1.2 废气

本项目废气通排风、废气处理系统由上海惠志环保科技有限公司设计,由江苏苏净工程建设有限公司施工建设。

(1) 有组织废气

废气分区收集,包括实验工艺设备排风、实验室排风设施排风(万向集风罩、通风橱收集)、一般房间排风(整体负压收集),其中工艺设备排风管道、通风橱管道接入废气处理系统,实验室仪器/设备经万向集风罩收集接入废气处理系统,一般房间废气经负压收集接入废气处理系统。

本项目有组织废气收集范围及其对应处理措施、排气筒见表4.1.2-1。

表4.1.2-1 有组织废气处理系统、排气筒和处理范围对应关系汇总表

序号	处理措施、编号	排气筒编号、高度	收集、处理范围
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			

序号	处理措施、编号	排气筒编号、高度	收集、处理范围
15			
16			
17			
18			

图4.1.2-1 本项目废气收集处理流向示意图

(Δ: 进口采样点; ◎: 出口采样点)

各实验室废气收集方式、对应的处理装置编号分别见表4.1.2-2~6。

表4.1.2-2 DA010排气筒对应废气系统收集情况

	衣4.1.2-		-2 DAULUHF (IRI	对应废气系统收集	トヨル		
序号	处理措施、	编号	楼层	废气来源	设备名称	数量	最大同时启用数量
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13			一楼				
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							

序号	处理措施、编号	楼层	废气来源	设备名称	数量	最大同时启用数量
26						

表4.1.2-3 DA011排气筒对应废气系统收集情况

序号	处理措施、编号	楼层	废气来源	设备名称	数量	最大同时启用数量
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12		二楼				
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						

表4.1.2-4 DA012排气筒对应废气系统收集情况

			ı		C113 170	
序号	处理措施、编号	楼层	废气来源	设备名称	数量	最大同时启用数量
1						
2						
3						
4						
5		一 1米				
6		二楼				
7						
8						
9						
10						

序号	处理措施、编号	楼层	废气来源	设备名称	数量	最大同时启用数量
11						

表4.1.2-5 DA013排气筒对应废气系统收集情况

序号	处理措施、编号	楼层	废气来源	设备名称	数量	最大同时启用数量
1						
2						
3		— ↑米				
4		二楼				
5						
6						
7						

表4.1.2-6 DA014排气筒对应废气系统收集情况

序号	处理措施、编号	楼层		设备名称	最大同时启用数量	
1						
2						
3						
4						
5		二楼	1 **			
6			一伢			
7						
8						
9						
10						

表4.1.2-7 DA015排气筒对应废气系统收集情况

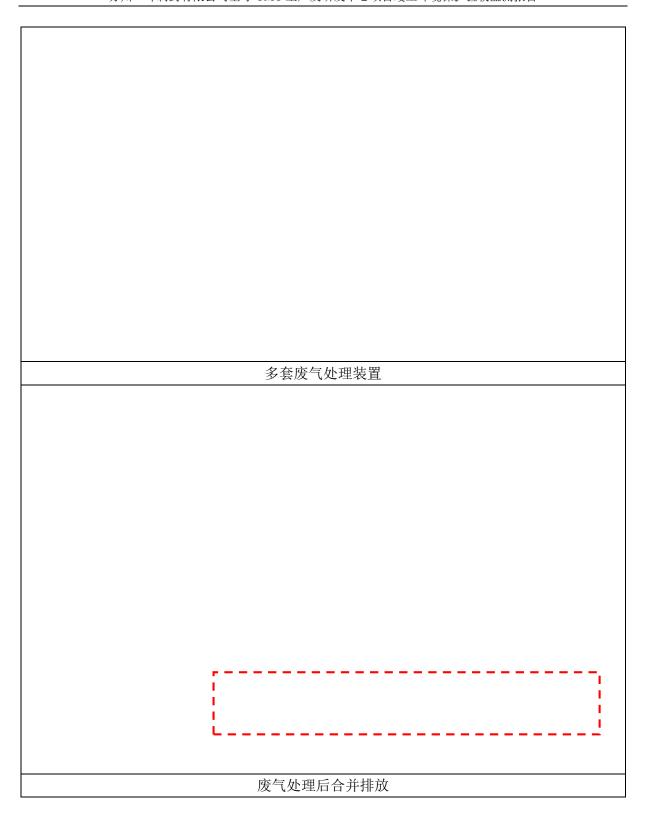
序号	处理措施、编号	楼层	废气来源	设备名称	数量	最大同时启用数量
1						
2						
3						
4						

本项目实际使用的活性炭吸附装置技术参数见表4.1.2-8。

表4.1.2-8 活性炭规格参数

人 1112 6								
编号	设备规格 mm	内部结构	运行条件	自控设施	活性炭类型	空塔流速 (m/s)	停留 时间	
1#								
2#								
3#								
4#								
5#								
6#								

编号	设备规格 mm	内部结构	运行条件	自控设施	活性炭类型	空塔流速 (m/s)	停留 时间
7#						(111,0)	7,41,4
8#							
9#							
10#							
11#							
12#							
13#							
14#							
15#							
16#							
17#							
18#							
本项目废气收集、处理装置及排气筒照片见图4.1.2-2。							


 •						
本项目废气收集	E、处理装	置及排气筒照片	计见图4.1.2-2 。			
万向吸气罩						

구성때 등 때
万向吸气罩
工位上的万向吸气罩

	[
	1
	i i
	i i
	i i i i i i i i i i i i i i i i i i i
	in the second of
	and the second of the second o
	i i i i i i i i i i i i i i i i i i i
	1
	1
	''
<u> </u>	香存间的集气口
	11 11 11 11 11 11 11 11 11 11 11 11 11
	通风橱

!	
与防爆柜连接的集气管道	实验区域的通道门常闭
	受气处理装置置于楼顶

	_
废气支管沿墙向上,废气处理装置置于楼顶	
A CALLETTA CARESTON	
废气进气管	

过滤器+活性炭装置	
Z W HI I I I I V V X E	
过滤器+活性炭装置+排气筒	

采样口及采样平台	
研发楼楼顶废气处理装置与排气筒布置示意图	

图4.1.2-2 废气收集、处理装置及排气筒照片、示意图

(2) 无组织废气

本项目无组织废气主要为经产尘设备自带除尘装置处理后,整体收集引上楼顶排 风口无组织排放的废气。对应收集范围及收集方式见表4.1.2-10。

序号	楼层	废气来源	设备名称	规格型号	数量
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11	二楼				
12	一饭				
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

表4.1.2-10 无组织废气对应收集范围及换气方式

无组织废气主要控制措施如下:

- ①含 VOCs 原料在密闭设备或密闭空间内操作,设备无法密闭的情况,采取局部气体收集措施,废气应排放至 VOCs 废气收集处理系统。
- ②含 VOCs 物料储存于密闭的容器、储库中,室内已进行防渗处理。盛装 VOCs 物料的容器或包装袋在非取用状态时应加盖、封口,保持密闭。采用非管道输送方式转移液态 VOCs 物料时,采用密闭容器。
- ③进行实验时保持通风橱或集风罩于实验开始前开启,实验结束后运行一.段时间后关闭,保持废气收集处理装置正常运行,尽可能减少废气的无组织逸散。

- ④加强废气处理设施日常检查,由专人对废气处理设施工作参数进行检查,避免废气处理设施非正常工况运行。
- ⑤建立台账,记录含 VOCs 原辅材料的名称、使用量、回用量、废弃量、去向以及 VOCs 含量等信息,台账保存期限不少于 5 年。

(3) 防护距离

本项目建成后,仍以苏州二叶制药有限公司厂区边界外 100m 设置卫生防护距离。 经现场勘查,卫生防护距离内无敏感点。

4.1.3 噪声

(1) 噪声源

本项目噪声源主要是主要为研发用离心机、整粒机、气流粉碎机以及环保设备配套的风机等设备运转产生的机械噪声。公司通过采取选用低噪声设备、基座减振、建筑物隔声等措施来降低噪声影响。

序号	设备名称	数量(台)	防治措施
1			
2			
3			
4			
5			
6			
7			
8			
9			选用低噪声设备、厂房隔声、 基础减振等
10			至 阳 /火/人
11			
12			
13			
14			
15			
16			
17			

表 4.1.3 项目主要噪声设备及噪声防治措施

(2) 治理设施

采取的具体降噪措施包括:

①选用环保低噪型设备,车间内各设备合理的布置,且设备作基础减振等措施:

- ②厂房做隔声处理,安装隔声门窗;
- ③生产设备底座安装采取减振措施,并做相应的隔声措施;
- ④采取绿化隔声等措施降低对本项目周围声环境的影响。

4.1.4 固(液)体废物

(1) 固(液)体废物产生及处置

《苏州二叶制药有限公司扩建生产肝素钠项目环境影响报告书》对本项目环评产生的危废通过"以新带老"进行了梳理、合并,并将部分不含氯研发合成反应废液处置去向调整为依托公司废液焚烧炉焚烧处理。该项目已于2022年11月1日通过环评审批,与本项目同步验收(故依托焚烧炉处理涉及的废气排气筒验收监测情况在《苏州二叶制药有限公司扩建生产肝素钠项目竣工环境保护验收监测报告》内表述,本项目验收材料不重复表述)。本项目对照"以新带老"后的危废产生、处置进行对照分析。

表 4.1.4-1 验收项目固(液)体废物产生及处理处置情况表

			W 1.1.1				y , <u>—//-/-</u>	生人且旧り			
序号	固废名称	属性	产生工序	形态	主要成分	废物 类别	废物代码		验收实际产 生量(t/a)	处理处置 量(t/a)	暂存处置方式
1											临时收集暂存于危废
											暂存间,最终暂存于
											危废仓库 1,委托苏
2											州市荣望环保科技有
											限公司、江苏东江环
											境服务有限公司处置
3											临时收集暂存于危废
4											暂存间,最终暂存于
5											危废仓库 1,委托苏
6											州市荣望环保科技有
7											限公司处置
8											
9											暂存于危废暂存间,
10											委托苏州市荣望环保
10											科技有限公司处置
											暂存于溶媒蒸馏残液
11											储罐,依托公司废液
											焚烧炉焚烧处理
12											售卖、综合利用
13											环卫清运

苏州市荣望环保科技有限公司核准经营: 焚烧处置**医药废物(HW02)**,废药物、药品(HW03),农药废物(HW04),木材防腐剂废物(HW05),废有机溶剂与含有机溶剂废物(HW06),热处理含氰废物(HW07),废矿物油与含矿物油废物(HW08),油/水、烃/水混合物或乳化液(HW09),精(蒸)馏残渣(HW11),染料、涂料废物(HW12),有机树脂类废物(HW13),感光材料废物(HW16),新化学物质废物(HW14),表面处理废物(HW17),含金属羰基化合物废物(HW19),无机氟化物废物(HW32),无机氰化物废物(HW33),废酸(HW34),废碱(HW35),有机磷化合物废物(HW37),有机氰化物废物(HW38),含酚废物(HW39),含醚废物(HW40),含有机卤化物废物(HW45),其他废物(HW49,仅限 772-006-49、309-001-49、900-039-49、#900-041-49、900-042-49、900-046-49、900-047-49、#900-999-49),废催化剂(HW50,仅限(261-151-50、#261-152-50、261-183-50、263-013-50、271-006-50、#275-009-50、**276-006-50**、900-048-50),合计 25000 吨/年。

江苏东江环境服务有限公司核准经营: 填埋处置: **医药废物(HW02)**、农药废物 (HW04)、废有机溶剂与含有机溶剂废物(HW06,900-405-06、900-407-06、900-409-06) 精 (蒸) 残渣 (HW11) 、染料、涂料废物 (HW12) 、有机树脂类废物 (HW13, 265-104-13、900-015-13、90-451-13)、新化学物质废物(HW14)、表面处理废物(HW17)、 焚烧处置残渣(HW18)、含铬废物(HW21)、含铜废物(HW22)、含锌废物(HW23)、 含废物(HW24)、含镉废物(HW26)、含铅废物(HW31)、无机氟化物废物(HW32)、 无机氰化物废物(HW33)、废酸渣(HW34)、废碱渣(HW35)、石棉废物(HW36)、 含有机卤化物废物(HW45, 261-081-45、261-084-45)、含镍废物(HW46)、有色金属 治炼废物(HW48)、其他废物(HW49),合计 20000 吨/年。焚烧处置: **医药废物(HW02)**, 废药物、药品(HW03),农药废物(HW04)木材防腐剂废物(HW05)废有机溶剂与 含有机溶剂废物(HW06),废矿物油与含矿物油废物(HW08),油/水、烃/水混合物 或乳化液(HW09),精(蒸)馏残渣(HW11),染料、涂料废物(HW12),有机树 脂类废物(HW13),感光材料废物(HW16),表面处理废物(HW17,仅限 336-050-17、336-051-17、336-052-17、336-053-17、336-054-17、336-055-17、336-056-17、336-057-17、336-058-17、336-059-17、336-060-17、336-061-17、336-062-17、336-063-17、 336-064-17、336-066-17)、废减(HW35),含酚废物(HW39),含醚废物(HW40), 含有机卤化物废物(HW45),其他废物(HW49,仅限 900-039-49、900-041-49、900042-49、900-044-49、900-047-49、900-999-49),废催化剂(HW50,仅限 263-013-50、275-009-50、276-006-50261-151-50),合计 13000 吨/年。

本项目危废类别有 HW02、HW49、HW50,在上述两家公司的处置范围内。

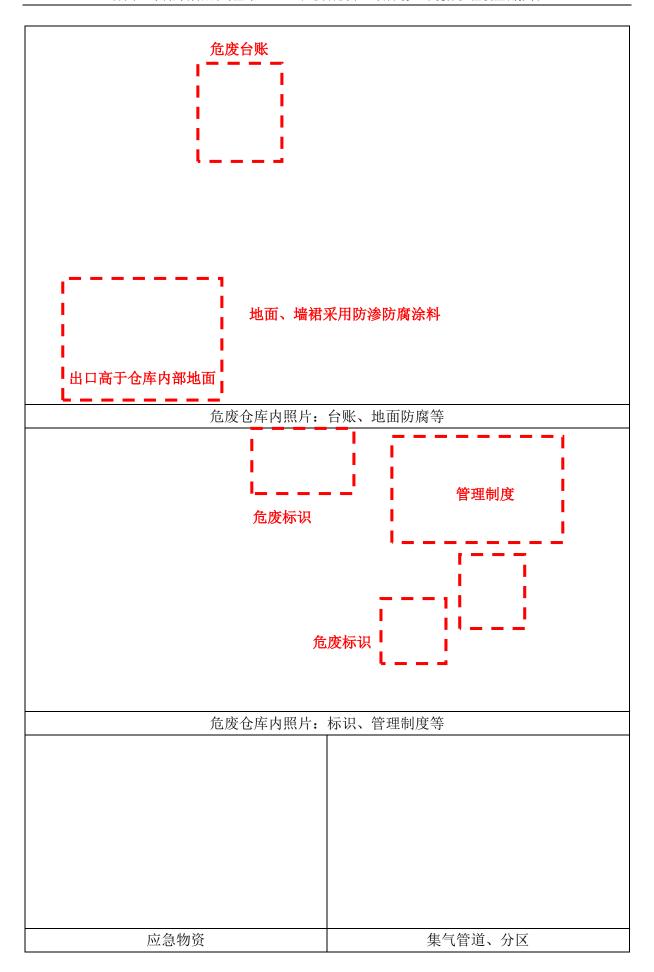
(2) 一般固废暂存间

本项目在研发中心内建设 1 个一般固废暂存间,面积为 12.3m²,并按照《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求进行了建设和管理。

(3) 危废暂存场所

本项目在研发中心内建设 1 个危废暂存间,面积为 17.6m²;并利用厂区现有危废仓库 1,面积为 45m²(公司另有占地面积约 30m²的危废仓库 2,全厂合计危废仓库占地面积约 92.6m²);现有溶媒蒸馏残液储罐,1只 15m³。

本次新建的危废暂存间和依托的危废仓库1已按《危险废物识别标志设置技术规范》(HJ1276-2022)、《环境保护图形标志—固体废物贮存(处置)场》(GB15562.2-1995)修改单张贴了危废识别标识和图形标志,且按照《危险废物贮存污染控制标准》(GB18597-2023)、《关于进一步加强危险废物污染防治工作的实施意见》(苏环办[2019]327号)等文件要求进行了自查、整改,完善了各类贮存要求,包括:


- ①危废仓库建有基础防渗设施,设排水地沟及收集池。防渗满足规范要求,具体做法如下:采取粘土铺底,再在上层铺设 10~15cm 的水泥进行硬化,并铺环氧树脂防渗。地面及墙裙采用防渗防腐涂料。
 - ②强化了防风、防雨、防晒措施。
 - ③配备了安全照明设施、安全防护设施,并设有应急防护设施。
- ④危险废物装入容器内,不相容的危险废物不堆放在一起,在包装的明显位置上 粘贴危险废物标签(包括类别和主要成分),并作好相应的记录。含油类废物、残液 由专用带盖容器暂时存放,收集废液的容器开孔直径不大于 70mm。
- ⑤配备防腐、防渗的专用塑胶桶,已装盛废物的包装容器妥善盖好或密封,容器表面保持清洁。
- ⑥由专业人员操作,单独收集和贮运,严格执行《危险废物收集、贮存、运输技术规范》(HJ2025-2012)和《危险废物转移联单管理办法》,严格按照要求办理有关手续。目前,危废协议已签订,并按规定签订危险废物转移联单,得到有关环境行政主管部门的批准。
 - ⑦危险废物临时存放时间不超过6个月。

危险废物在危废暂存库内储存方式见表 4.1.4-2, 危废暂存设施现场照片见图 4.1.4。

表 4.1.4-2 危废暂存方式汇总表

序号	危废名称	废物类别	废物代码	暂存方式
1				密闭袋装
2				密闭袋装
3				密闭袋装
4				密闭袋装
5				密闭袋装
6				密闭袋装
7				密闭袋装
8				装桶密封
9				装桶密封
10				密闭袋装
11				暂存溶媒蒸馏残液储罐

研发楼内的危废暂存间标识	托盘、废气收集管网
火灾探测及报警仪	厂门口危废标识牌

仓库仓库门口标识牌	仓库摄像头
危废仓库应急照明	危废仓库内可燃气体探头

图4.1.4 危废暂存间污染防治措施及管理台账照片

4.2 其他环境保护设施

4.2.1 环境风险防范设施

本项目依托现有厂内设有专职管理机构,配备安全防护器材,已建设有消防废水收集池、初期雨水池等设施,现有风险防范措施如下。

序号	项目	数量	备注	
1	事故废水收集池	1座	现有的 700m³ 事故应急池	
2	初期雨水池	1座	150m³ 初期雨水池	
3	消防水池	1座	490m³消防水池和配套泵房	
4	其他消防设施	/	设置灭火器、消防水龙头、黄沙等	
6	安全防护器材	/	配备了防毒面具、化学防护服、防火毯、担架等	

表 4.2.1 公司现有环境风险防范措施一览表

苏州二叶制药有限公司已于 2023 年 4 月 26 日修订、发布全厂环境风险应急预案,并完成备案手续,备案号: 320507-2023-059-M。

28K 125 - 14 20 h	市井片為池
消防水池	事故应急池
洗脸器	应急物资

图4.2.1 风险防范措施、应急处置物资照片

4.2.2 规范化排污口、监测设施

本项目依托厂区现有排水管网以及污水、雨水排口,严格实行清污分流、雨污分流。 公司东北侧设有1个污水排口DW001,南侧设有1个清下水排口DW002。

本项目新建6根排气筒: DA010~016, 已设置了便于采样、监测的采样口或采样平台。

上述排放口已按照《关于印发〈江苏省排污口设置及规范化整治管理办法〉的通知》 苏环控[1997]122号、《环境保护图形标志-排放口(源)》(GB15562.1-1995)要求设置 了标志牌,便于识别和监督性监测。

清下水排口:清下水排口设置了流量计、COD、pH在线监测仪,设有切断阀门,并可将污染雨水转移到事故池。

污水排口:污水排口设有在线监测,监测指标包括流量、pH、COD、氨氮、总氮、总磷,实时监测排向污水厂的水质。

公司委托有资质的第三方检测机构按照自行监测方案的要求对废水、废气排放口开展自行监测。

各排口现场照片见图4.2.2。

DA010 排气	 역及文程口
DAUIU AFT	,同及木件口
DA011 排与	.简及采样口
DA011 J- F	10久不行口
DA012 + 1-	· 符及亚比口
DA012 排气	同以不行口

DA013 排气	曾及 平样口
DAVI3 14F	向及水件
	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
DA015 排气	筒及采样口

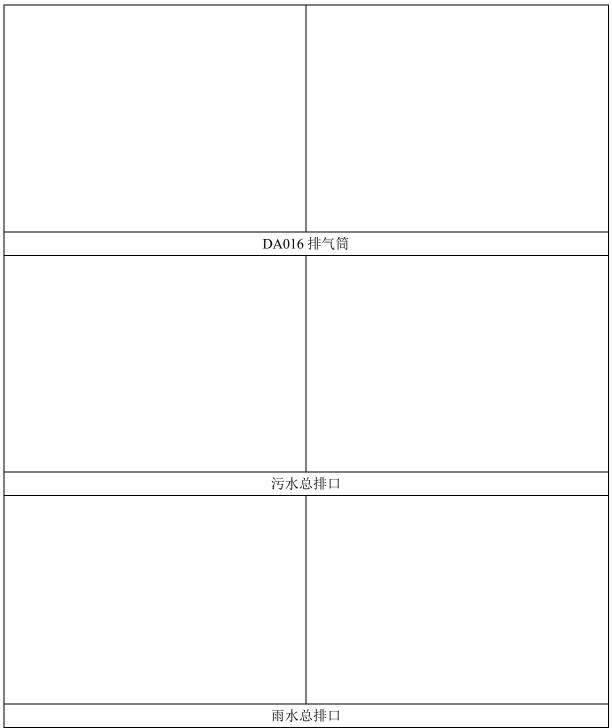


图4.2.2 各排口标识牌照片

4.3 环保设施投资及"三同时"落实情况

本项目"三同时"验收落实情况见表 4.3,本项目环保设施符合"三同时"要求,即与主体工程同时设计、同时施工、同时投入生产和使用,项目实际总投资 11000 万元,实际环保投资 550 万。

表 4.3 "三同时"验收一览表

项目名称	苏州二叶制药有限公司全球 CMC 生产及研发中心项目					
		环评情况	实际建设情况			
类别	污染源	治理措施(设施数量、规模、处理能力等)	治理措施(设施数量、规模、处理能力等)	环保投资 (万元)		
废气				510		
废水				10		
噪声				15		
固废				/		
事故应急措施				10		
清污分流、排污口 规范化设置				5		
总投资	/	550	/	550		

5 环境影响报告表主要结论与建议及其审批部门审批决定

5.1 环境影响报告表主要结论与建议

总结论:

从环境保护角度,建设项目环境影响可行。

5.2 审批部门审批决定

苏州市生态环境局于2021年12月17日对本项目做出批复(苏环建[2021]07]如下:

你公司报送的《苏州二叶制药有限公司全球CMC生产及研发中心项目建设 影响报告表》(以下简称报告表)收悉。经研究,现批复如下:

- 一、该项目建设地址为: 苏州市相城区黄镇东桥安民路2号。建设内容及规用现有生产厂房建设全球CMC苏州生产及研发中心,重点生产和开发以高端和为主的仿制药,主要进行临床报批和工艺确证样品的生产、药学质量研究与处发等工作,助力新药研发和仿制药的产品落地和业务发展。本项目合成实验中实验中心均为小试规模,工程中心进行制剂工艺研发,达到中试规模。本项目消青霉素粉针剂生产线(年产青霉素粉针0.66亿支),其他产品及产能不变,
- 二、根据你公司委托江苏虹善工程科技有限公司(编制主持人:黄飞燕,证书管理号:201805035320000045)编制的《报告表》结论和技术评估意见,实施将对生态环境造成一定影响,在切实落实各项污染防治、"以新带老"、防范,确保各类污染物稳定达标排放的前提下,从生态环境保护角度分析,该对环境的不利影响可得到缓解和控制。我局原则同意《报告表》的环境影响资论和拟采取的生态环境保护措施。
- 三、该项目建设必须严格执行环境保护设施与主体工程同时设计、同时放投产的"三同时"制度。在项目工程设计、建设和环境管理中,你公司须落实中提出的各项生态环境环保要求,确保各类污染物达标排放。并应着重做好
- 1.厂区应实行"雨污分流、清污分流",工艺水制备浓水设备清洗水、资不得含氮磷)经收集处理后与生活污水一起经市政污水管网接入苏州市相城区污水处理)处理,排放执行苏州市相城区东桥集中污水处理厂接管标准;
- 2.配置反应液、流动相等工序产生的废气经收集处理后通过17米高DA010放,化学合成工序产生的废气经收集处理后分别通过17米高DA011、DA012排湿法造粒干法造粒、直接混合、冻干等工序产生的废气经收集处理后分别通

DA013~DA015以及20米高DA016排气筒排放;执行《制药工业大气污染物排放标准》(DB32/4042-2021)表1表2标准限值,DMF参照执行《化学工业挥发性有机物排放标准》(DB32/3151-2016)表1标准限值。加强对生产车间的管理,废气收集率、处理率等应达到报告表中相应要求,采取适当措施减少废气无组织排放,厂区内VOCs无组织排放监控点浓度应符合《挥发性有机物无组织排放控制标准》(GB37822-2019)附录A中特别排放限值:

3.厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准,必须采取防振降噪措施:

4.危险废物、一般固体废弃物、生活垃圾分类收集。项目实施后产生的危险废物种类为:过滤残渣(271-001-02),分层废液、提取处理废液、浓缩废液、废母液(271-002-02),化学合成设备清洗废液、制剂研发设备清洗废液、工程中心设备清洗废液(900-047-49),化学合成过滤废滤材(271-003-02),液体制剂过滤废滤材(272-003-02),废催化剂(271-006-50)报废原药(271-005-02),报废制剂(272-005-02),实验室废液(900-047-49),沾染原辅料、产品的废包装材料、废过滤器(900-041-49),废活性炭(900-039-49)。该项目应配套建设符合《危险废物贮存污染控制标准》(GB18597-2001)的危险废物贮存场所,全厂总面积不小于92.6m²,设置危险废物识别标签。按照《危险废物规范化管理指标体系》要求加强日常管理,危险废物情况记录上应注明危险废物的名称、来源、数量特性和包装容器的类别、入库日期、存放库位、废物出库日期及接收单位名称。危险废物应该委托持有有效危险废物经营许可证且具备相应处理能力的单位进行处理,安排专人负责、全程跟踪,禁止将危险废物排放至环境中。未沾染原辅料、产品的废包装材料经收集后外售处置,一般工业固废贮存应符合《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求,一般工业固废仓库总面积不小于276.75m²。生活垃圾由环卫部门统一清运处理,不得随意扔撒或者堆放;

5.项目以厂界为起点设置100米的卫生防护距离,卫生防护距离内不得有居民住宅等 环境敏感目标;

6.建设单位应全面落实报告表提出的各项环境风险防范措施。在该项目实际排放污染物前,按《企事业单位和工业园区突发环境事件应急预案编制导则》(DB32/T3795-2020)完成环境风险应急预案的编制,报环保部门备案;你公司在项目设计施工建设和生产中总平面布局以及主要工艺设备、储运设施、公辅工程、污染防治设施安装、使用中涉及安全生产的应遵守设计使用规范和相关主管部门要求;应对各类环境治理设施开

展安全风险辨识管控,健全内部污染防治设施稳定运行和管理责任制度,严格依据标准规范建设环境治理设施,确保环境治理设施安全、稳定、有效运行;

7.按《江苏省排污口设置及规范化整治管理办法》的规定规范设置排放口及标识;按《江苏省污染源自动监控管理暂行办法》(苏环规[2011]1号)要求,安装自动监控设备及配套设施;

8.建设单位应按报告表提出的要求执行环境监测制度,按照《排污单位自行监测技术指南总则》(HJ819-2017)和行业规范编制自行监测方案并开展监测工作,监测结果及相关资料备查。

四、项目实施后,污染物排放总量在相城区内平衡,污染物排放总量核定为(本项目/全厂):

- (一)废水污染物排放总量(吨/年):工业废水污染物:废水量<1558.3/273664.6, COD0.0779/49.7762, SS0.0234/18.3417, NH-N<0/3.2385, TN<0/4.7708, TP<0/0.6797, 石油类<0/0.125, 挥发酚<0/0.01; 生活污水污染物:废水量<4896/27186, COD<0.2448/4.4475, SS<0.0734/1.5971, NH-N<0.0049/0.2674, TN<0.0122/0.4249, TP<0.0049/0.0599;
- (二) 大气污染物排放总量(吨/年): 颗粒物(有组织)<0.059/0.9798, HC1(有组织)0/0.00022, 乙醇(有组织)<0.071/2.1961, 甲醇(有组织)0.019/0.1205, DMIF(有组织)<0.002/0.0415, 乙酸乙酯(有组织)<0.008/0.008, 二氯甲烷(有组织)<0.011/0.011, 乙腈(有组织)0.016/0.016, 氯化苄(有组织)<0/0.0186, 甲苯(有组织)0.003/0.003, 丙酮(有组织)<0.05/0.05, 非甲烷总烃(有组织)<0.227/5.5617, 二氧化硫(有组织)<0/6.7473, NOx(有组织)/11.5822, 二噁英(有组织)<0/1.22×10⁻⁹, 铅及其化合物(有组织)<0/3.36×10⁻⁴, 汞及其化合物(有组织)<0/4.52×10⁻⁴, 醋酐(有组织)<0/0.04; 颗粒物(无组织)0038/0.0785, 非甲烷总烃(无组织)0.253/0.636。

五、严格落实生态环境保护主体责任,你公司应当对《报告表》的内容和结论负责。

六、你公司应当依照《排污许可管理条例》规定,及时申请排污许可证;未取得排污许可证的,不得排放污染物。按照《建设项目竣工环境保护验收暂行办法》办理环保设施竣工验收手续。需要配套建设的环境保护设施未建成、未经验收或者经验收不合格,建设项目已投入生产或者使用的,生态环境部门将依法进行查处。

七、苏州市相城生态环境局组织开展该工程的"三同时"监督检查和日常监督管理 工作。 八、建设单位是该建设项目环境信息公开的主体,须自收到我局批复后及时将该项目报告表的最终版本予以公开。同时应按照《建设项目环境影响评价信息公开机制方案》 (环发[2015]162号)做好建设项目开工前、施工期和建成后的信息公开工作。

九、如该项目所涉及污染物排放标准发生变化,应执行最新的排放标准。

十、该项目在建设过程中若项目的性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的措施、设施发生重大变动的,应当重新报批项目的环境影响评价文件。自批准之日起,如超过5年方决定工程开工建设的,环境影响评价文件须报重新审核。

6 验收执行标准

6.1 废水

本项目废水接管东桥污水处理厂处理,执行东桥污水处理厂最新接管标准。

根据项目环评,接入厂区污水处理站的研发楼、工程楼设备清洗水、洗瓶水要求不含氮磷,考虑到原水为自来水,其本身也含有微量氮磷,因此本项目实测自来水总氮、总磷指标,并与研发楼、工程楼清洗废水排水的总氮、总磷指标比较,研发楼、工程楼清洗废水排水总氮、总磷指标应小于自来水实测总氮、总磷指标或与自来水总氮、总磷指标相当。

1001 1001 1001 100 1001 100 100 100 100						
排口类型 排口类型	/ 污染物因子	排放限值(mg/L)				
押口矢型	行来物四丁	环评要求	验收要求			
	pH (无量纲)	6~9	6~9			
	COD	200	200			
污水总排口	悬浮物	150	150			
行小心計口	氨氮	12	12			
	TP	2.5	2.5			
	TN	20	20			
研发楼清洗废水出水口	TP	/				
例 及 按 用 机 及 小 山 小 口	TN	/	小于自来水实测总氮总磷指 标或与自来水总氮总磷指标			
工程中心清洗废水出水口	TP		你以与日本小芯炎			
工性中心相视及外面外口	TN	/	—			

表 6.1 废水污染物排放标准

6.2 废气

本项目新建的 DA010~016 排气筒主要污染物排放执行江苏省地方标准《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2标准,DB32/4042-2021 未包含的 DMF、NMHC 厂界监控点限值参照执行江苏省地方标准《化学工业挥发性有机物排放标准》(DB32/3151-2016)中表 1及表 2排放限值标准,具体见表 6.2-1~2。

	农 0.2-1 有组外人 (17米物)							
	环评要求				验收要求			
序号	指标	最高允许 排放浓度	最高允许排放 (kg/h)		最高允许排 放浓度	最高允许排 (kg/h)		标准来源
		(mg/m^3)	排气筒(m)	二级	(mg/m^3)	排气筒(m)	二级	
1	颗粒物	10	/	/	10	/	/	《制药工业大
2	甲醇	50	/	/	50	/	/	气污染物排放 标准》
3	乙酸乙酯	40	/	/	40	/	/	(DB32/4042-
4	二氯甲烷	20	/	/	20	/	/	2021)表1、

表 6.2-1 有组织大气污染物排放标准

			环评要求			验收要求		
序号	指标	最高允许 排放浓度	最高允许排放 (kg/h)		最高允许排 放浓度	最高允许排 (kg/h)		标准来源
		(mg/m^3)	排气筒(m)	二级	(mg/m^3)	排气筒(m)	二级	
5	乙腈	20	/	/	20	/	/	表 2
6	甲苯	20	/	/	20	/	/	
7	丙酮	40	/	/	40	/	/	
8	NMHC	60	/	/	60	/	/	
9	TVOC	100	/	/	100	/	/	
10	臭气浓度	1000 无量纲	/	/	1000 无量纲	/	/	
11	DMF	30	15	0.54	30	15	0.54	《化学工业挥 发性有机物排 放标准》 (DB32/3151- 2016) 中表 1

表 6.2-2 无组织大气污染物排放标准

监测点	污染物	浓度限值(mg/m³)		
监侧从	行架彻	环评要求	验收要求	标准来源
	NMHC	4.0	4.0	《制药工业大气污染物排放标准》
厂界	臭气浓度	20 (无量纲)	20 (无量纲)	(DB32/4042-2021) 表 7
	DMF	0.4	0.4	《化学工业挥发性有机物排放标 准》(DB32/3151-2016)中表 2
厂内	NMHC	6(小时均值)	6(小时均值)	《制药工业大气污染物排放标准》
) [2]	NIVINC	20 (一次值)	20 (一次值)	(DB32/4042-2021) 表 6

6.3 噪声

表 6.3 厂界噪声排放标准

	排放标准 dB(A)					
类别	环评	要求	验收	要求		
	昼间	夜间	昼间	夜间		
3 类区	65 55		65	55		
标准来源	《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准					

6.4 总量控制指标

本项目废气总量控制指标见表 6.4-1。

表 6.4-1 废气污染物总量控制指标

米 미	类别 污染物名称 -		本项目总量控制指标		
一			环评 (t/a)	验收要求(t/a)	
		颗粒物	0.059	0.059	
废气	有组织	甲醇	0.019	0.019	
		乙酸乙酯	0.008	0.008	

类别	>	染物名称	本项目总量控制指标		
一	15	朱彻石桥	环评(t/a)	验收要求(t/a)	
		二氯甲烷	0.011	0.011	
		乙腈	0.016	0.016	
		乙醇	0.071	0.071	
	甲苯		0.003	0.003	
		丙酮	0.050	0.050	
		DMF	0.002	0.002	
		NMHC	0.227	0.227	
	无组织	颗粒物	0.038	0.038	
		NMHC	0.253	0.253	

本项目废水依托现有废水总排口接管,所在车间用水未单独计量,故废水排放总量 与项目建成后全厂排放量进行对照。详见表 6.4-2。

表 6.4-2 废水污染物总量控制指标

米郎	污染物名称		本项目接领	学量(t/a)	全厂接管量(t/a)		
			环评	验收要求	环评	验收要求	
		水量	1558.3	250203.6	1558.3	250203.6	
	生产废水	COD	0.0779	43.22216	0.0779	43.22216	
		SS	0.0234	2.017463	0.0234	2.017463	
		水量	4896	27186	4896	27186	
	生活污水	COD	0.2448	4.7028	0.2448	4.7028	
		SS	0.0734	0.2963	0.0734	0.2963	
		NH3-N	0.0049	0.1099	0.0049	0.1099	
废水		TN	0.0122	0.458	0.0122	0.458	
		TP	0.0049	0.0233	0.0049	0.0233	
		水量	6454.3	277389.6	6454.3	277389.6	
		COD	0.3227	47.92496	0.3227	47.92496	
	∆;⊥	SS	0.0968	2.313763	0.0968	2.313763	
	合计	NH3-N	0.0049	0.1099	0.0049	0.1099	
		TN	0.0122	0.458	0.0122	0.458	
		TP	0.0049	0.0233	0.0049	0.0233	

7 验收监测内容

验收监测期间,按最大同时研发实验进行工况安排。

7.1 废水

废水污染物监测点位、监测因子、监测频率及监测频次见表 7.1。

监测因子 序号 监测点位名称 监测频次 环评要求 验收实际 调节池1 两天,4次/天 1 COD, SS 预曝气池出水口 COD, SS 2 两天,4次/天 (进调节池2) pH, COD, SS, NH₃-调节池 2 / 两天,4次/天 3 N, TN, TP pH、COD、SS、NH3pH、COD、SS、NH3-总排口 两天,4次/天 4 N, TN, TP N, TN, TP 研发楼清洗废水出水口 TN, TP 两天,4次/天 5 / 工程楼清洗废水出水口 / TN, TP 两天,4次/天 6 7 原水(自来水) / TN, TP 监测1次

表 7.1 废水监测内容一览表

7.2 废气

7.2.1 有组织排放

废气监测点位、监测因子、监测频次及监测周期见表 7.2.1, 监测点位见图 4.1.2-1。

其中,未对 5#~17#废气处理装置效率进行采样,是因为 5#~13#废气处理装置合并经 DA014 排气筒排放,14#~19#排气筒合并经 DA015 排气筒排放,受限于顶楼空间限制,处理后、合并前的管道较短,无法避开弯管、断面急剧变化的部位,设置符合要求的采样口,故仅对合并后排气筒进行了采样监测。5#~13#、14#~19#废气处理装置合并现场照片见图 7.2.1。

	衣 /.2.1 有组织及气监侧内谷一见衣								
序号	対应		监	监测	采样日期 采样日期				
\T •	排气筒	血侧总位且	环评要求	验收实际	频次	不什口朔			
1	DA010	1# "过滤器 F7+活 性炭" 进口	/	NMHC、TVOC、甲醇	3 次	2023.05.15			
2	DAUIU	DA010 出口	NMHC、TVOC、甲 醇、 乙腈	NMHC、TVOC、甲醇	3 次	2023.05.16			
3	DA011	2#"过滤器 F7+活 性炭"进口	/	颗粒物、NMHC、 TVOC、甲苯、甲醇、 DMF、乙酸乙酯、二氯甲 烷、丙酮、乙醇	3 次	2023.05.15 2023.05.16			
4		DA011 出口	颗粒物、NMHC、 TVOC、甲苯、甲	颗粒物、NMHC、 TVOC、甲苯、甲醇、	3 次				

表 7.2.1 有组织废气监测内容一览表

		ı				1
				DMF、乙酸乙酯、二氯甲		
			酯、二氯甲烷、 乙	烷、丙酮、 乙醇		
			腈 、丙酮			
			臭气浓度	臭气浓度	4 次	
5		3#"过滤器 F7+活性炭"进口	/	NMHC、TVOC、甲苯、 甲醇、DMF、乙酸乙酯、 二氯甲烷、丙酮、乙醇	3 次	
6	DA012	DA012 出口	NMHC、TVOC、甲 苯、甲醇、DMF、 乙酸乙酯、二氯甲 烷、 乙腈 、丙酮	NMHC、TVOC、甲苯、 甲醇、DMF、乙酸乙酯、 二氯甲烷、丙酮 、乙醇	3 次	2023.05.15 2023.05.16
			臭气浓度	臭气浓度	4 次	
7	DA013	4#"过滤器 F7+活 性炭"进口	/	颗粒物、NMHC、 TVOC、丙酮、乙醇	3 次	2023.05.18
8	DA013	DA013 出口	颗粒物、NMHC、 TVOC、丙酮	颗粒物、NMHC、 TVOC、丙酮、 乙醇	3 次	2023.05.19
9	DA014	DA014 出口	颗粒物、NMHC、 TVOC、甲醇、乙酸 乙酯、二氯甲烷、 乙 腈 、甲苯、丙酮	颗粒物、NMHC、 TVOC、甲醇、乙酸乙 酯、二氯甲烷、甲苯、丙 酮、 乙醇	3 次	2023.05.18 2023.05.19
10			臭气浓度	臭气浓度	4 次	
11			DMF	DMF		2023.05.15 2023.05.16
12	DA015	DA015 出口	颗粒物、NMHC、 TVOC、丙酮	颗粒物、NMHC、 TVOC、丙酮、 乙醇	3 次	2023.05.18 2023.05.19
13	DA016	18# "过滤器 F7+ 活性炭"进口	/	颗粒物、NMHC、 TVOC、丙酮、乙醇	3 次	2023.05.05
14	DAUIO	DA016 出口	颗粒物、NMHC、 TVOC、丙酮	颗粒物、NMHC、 TVOC、丙酮、 乙醇	3 次	2023.05.12

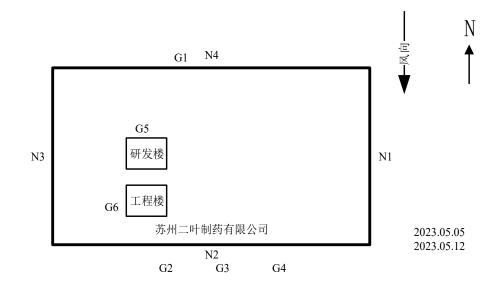
注: 乙腈尚无国家发布的监测方法,故未采样监测。

图7.2.1 5#~13#、14#~19#废气处理装置合并现场照片

7.2.2 无组织排放

无组织废气监测点位、监测因子、监测频次见表 7.2.2。

表 7.2.2 无组织监测内容一览表


序号	采样日期	点位名称	监测	监测频次		
17° 5	不什口粉	点位右称	环评要求	验收实际	血侧砂火化	
1		厂界上风向监控点位 G1				
2	2023.05.05	厂界下风向监控点位 G2	NMHC	颗粒物 NMHC	4 次	
3	2023.05.12	厂界下风向监控点位 G3	臭气浓度	DMF 臭气浓度	7 1)(
4		厂界下风向监控点位 G4				
5	2023.05.18	工程楼门口外 1m G5	NMHC	NMHC	4 次	
6	2023.05.19	研发楼门口外 1m G6	INIVITIC	INIVITIC	4 (A	

7.3 厂界噪声监测

厂界噪声监测点位名称、监测量、监测频次及监测周期见表7.3。

表 7.3 噪声监测内容一览表

点位名称	编号	监测	因子	上 上测频次	采样日期	
点位 石 柳	細与	环评要求	验收实际	监例 例(人	木件口朔 	
项目东厂界外1米	N1					
项目南厂界外1米	N2	连续等效 A 声级	上 连续等效 A 声级	监测 2 天,昼、夜各监	2023.05.18	
项目西厂界外1米	N3	上线等双 A 产级	连续等双 A 户级	生、 牧台	2023.05.19	
项目北厂界外1米	N4					

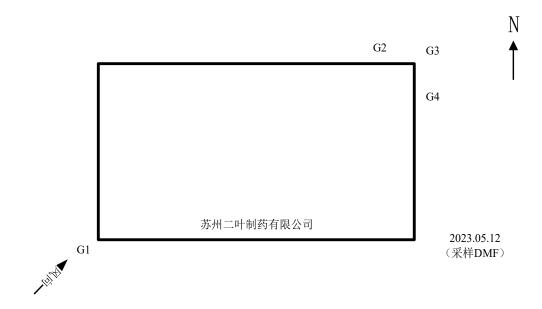


图7.3 无组织废气及噪声监测点位示意图

8 质量保证和质量控制

8.1 监测分析方法

各项监测因子监测分析方法名称、方法标准号或方法来源、分析方法见表 8.1-1。

表 8.1-1 监测分析方法及方法来源

检测类别	项目	检测依据	检出限			
	低浓度颗粒物	《固定污染源废气 低浓度颗粒物的测定重量法》 (HJ 836-2017)	1.0mg/m ³			
	非甲烷总烃	《固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱 法》(HJ38-2017)	0.07mg/m^3			
	甲醇	《固定污染源排气中甲醇的测定 气相色谱法》 (HJ/T 33-1999)	2 mg/ m^3			
废气	二氯甲烷	《固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法》(HJ 1006-2018)	0.3 mg/ m^3			
有组织	丙酮		0.01 mg/ m^3			
	乙酸乙酯	《固定污染源废气 挥发性有机物的测定 固相吸附-热脱附	0.006			
	甲苯	/ 气相色谱-质谱法》(HJ 734-2014)	0.004			
	挥发性有机物		见表8.1-2			
	乙醇	《环境空气中乙醇的测定 作业指导书》JSYH-SOP-002	2 mg/ m ³			
	DMF	《环境空气和废气 酰胺类化合物的测定 液相色谱法》 (H801-2016)	0.02 mg/m ³			
	非甲烷总烃	《环境空气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》 (HJ604-2017)	0.07mg/m^3			
废气	总悬浮颗粒物	《环境空气 总悬浮颗粒物的测定 重量法》 (HJ 1263-2022)	$7\mu g/m^3$			
无组织	臭气浓度	《环境空气和废气 臭气的测定 三点比较式臭袋法》 (HJ1262-2022)	/			
	DMF	《环境空气和废气 酰胺类化合物的测定 液相色谱法》 (H801-2016)	0.02 mg/m ³			
	рН	《水质 pH值的测定 电极法》(HJ1147-2020)	/			
	化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》(HJ828-2017)	4mg/L			
	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》(HJ535-2009)	0.025mg/L			
废水	总氮	总氮 《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》 (HJ636-2012)				
	总磷	《水质 总磷的测定 钼酸铵分光光度法》 (GB11893-1989)	0.01mg/L			
	悬浮物	《水质 悬浮物的测定 重量法》(GB11901-1989)	4mg/L			
噪声	厂界噪声	《工业企业厂界环境噪声排放标准》(GB12348-2008)	/			

表 8.1-2 挥发性有机物的检出限

77 002 = 37 次四月70月7日日代							
项目	检出限(mg/m³)	检出限(mg/m³) 项目					
丙酮	0.01	丙二醇单甲醚乙酸酯	0.005				
异丙醇	0.002	乙苯	0.006				
正己烷	0.004	对/间二甲苯	0.009				
乙酸乙酯	0.006	2-庚酮	0.001				

项目	检出限(mg/m³)	项目	检出限(mg/m³)	
苯	0.004	苯乙烯	0.004	
六甲基二硅氧烷	0.001	邻二甲苯	0.004	
3-戊酮	0.002	苯甲醚	0.003	
正庚烷	0.004	苯甲醛	0.007	
甲苯	0.004	1-癸烯	0.003	
环戊酮	0.004	2-壬酮	0.003	
乳酸乙酯	0.007	1-十二烯	0.008	
乙酸丁酯	0.005			

8.2 监测仪器

仪器名称、型号、编号情况见表 8.2。

表 8.2 监测仪器一览表

项目类别	检测项目	仪器设备	仪器编号	检测单位	
	рН	PHB-5便携式pH计	JSYH-XC-0140		
废水	化学需氧量	/	/		
	悬浮物	PTX-FA210S电子天平	JSYH-FX-0001		
	氨氮	722N可见分光光度计	JSYH-FX-0015		
	总氮	T6紫外可见分光光度计	JSYH-FX-0016		
	总磷	T6紫外可见分光光度计	JSYH-FX-0016		
	低浓度颗粒物	PT-124/85S电子天平	JSYH-FX-0002		
	甲醇	Agilent8860+5977B 气质联用仪	JSYH-FX-0021	江苏裕和检测	
	丙酮、乙酸乙 酯、甲苯、挥 发性有机物	f、甲苯、挥 Agilent8860+5977B 气质联用仪		技术有限公司	
有组织	二氯甲烷	Agilent8860+5977B 气质联用仪	JSYH-FX-0021		
月 年 5 年 5 年 5 年 5 年 5 年 5 年 5 年 5 年 5 年	非甲烷总烃	GC9790II气相色谱仪	JSYH-FX-0034		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	丙酮	丙酮 Agilent8860+5977B 气质联用仪			
	臭气浓度	XA-80F 大流量低浓度自动烟尘烟气测 试仪	JSYH-XC-0151		
	乙醇	Agilent8860气相色谱仪	JSYH-FX-0021		
	DMF	UltiMate3000 高效液相色谱仪	TK-fx-jd-sp-018	泰科检测科技 江苏有限公司	
	总悬浮颗粒物	PT-124/85S电子天平	JSYH-FX-0002	次	
无组织 废气	非甲烷总烃	GC9790II气相色谱仪	JSYH-FX-0025	江苏裕和检测 技术有限公司	
	臭气浓度 /		/	IX/FII/KA N	
	DMF	UltiMate3000 高效液相色谱仪	TK-fx-jd-sp-018	泰科检测科技 江苏有限公司	
噪声	厂界噪声	AWA6228多功能声级计 AWA6022A型声校准器	JSYH-XC-0126 JSYH-XC-0129	江苏裕和检测 技术有限公司	

8.3 水质监测分析过程中的质量保证和质量控制

水样的采集、运输、保存、实验室分析和数据计算的全过程均按照《地表水和污水监测技术规范》(HJ/T91-2019)、《水和废水监测分析方法》(第四版)、《环境水质监测质量保证手册》(第四版)的要求以及各监测项目标准分析方法规定的质量控制要求,选择的方法检出限满足要求,采样过程中采集10%的平行样,实验室分析过程使用标准物质、空白试验等质控措施,并对质控数据进行分析。

8.4 气体监测分析过程中的质量保证和质量控制

废气验收监测质量控制与质量保证按照《固定源废气监测技术规范》(HJ/T397-2007)、《固定污染源监测质量保证与质量控制技术规范(试行)》(HJ/T373-2007)、《大气污染物无组织排放监测技术导则》(HJ/T55-2000)中有关规定执行。尽量避免被测排放物中共存污染物因子对仪器分析的交叉干扰;被测排放物的浓度应在仪器测试量程的有效范围即仪器量程的30~70%之间。对采样仪器的流量计采样前后进行校准。

8.5 噪声监测分析过程中的质量保证和质量控制

测量仪器和校准仪器定期检验合格,并在有效期内使用,每次测量前、后在测量 现场进行声学校准,其前、后校准示值偏差不大于0.5dB。 月 12 日、2023 年 5 月 15 日、2023 年 5 月 16 日、2023 年 5 月 18 日、2023 年 5 月 19 日进行现场验 设施,环保治理设施均处于正常运行状态。

J监测,体现验收监测数据的代表性和有效性,公司调整了各研发活动的实验时间、过程,确保验收 试态。经统计,验收监测期间,各类化学物质使用情况见表 9.1。

表 9.1-1 验收监测期间生产工况统计表

74 > 12 - 1		741 4-1-7	/ _ / / / /						
		环评年消 环评日均消		验收时消耗量(g/d)					
がは、おり	耗量 kg	耗量g	2023.05.05	2023.05.12	2023.05.15	2023.05.16	2023.05.18	2023.05.19	

	名称	抽场 41八	环评年消	环评日均消			验收时消耗	毛量(g/d)		
序号	石柳	规格、组分	耗量 kg	耗量g	2023.05.05	2023.05.12	2023.05.15	2023.05.16	2023.05.18	2023.05.19
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										

序号	名称	+111+4 44 1	环评年消	环评日均消		验收时消耗	毛量(g/d)		
	冶 柳	规格、组分	耗量 kg		2023.05.12	2023.05.15	2023.05.16	2023.05.18	2023.05.19
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49									_
50									
51				_					

9.2 环保设施调试运行效果

9.2.1 废水

本项目车间废水排口水质监测结果见表 9.2.1-1。

表 9.2.1-1 本项目车间废水排口监测结果表

监测时间	监测点位	频次	总磷(mg/L)	总氮(mg/L)
		第1次		
	 研发楼清洗废水出水口	第2次		
	例 及 按	第3次		
2023.05.05		第4次		
2023.03.03		第1次		
	 工程楼清洗废水出水口	第2次		
	工作的人们及小山小口	第3次		
		第4次		
		第1次		
	 研发楼清洗废水出水口	第2次		
	例 及按相视及水山水口	第 3 次		
2023.05.12		第 4 次		
2023.03.12		第1次		
	 工程楼清洗废水出水口	第2次		
	工作资情机及水田水口	第3次		
		第 4 次		
	平均值			
2023.05.05	浓度范围			
	 生产左间田水洪水口 /	(对比指挥)		
2023.05.12 生产车间用水进水口(、7.7 トロ・1日 1777 ノ		
	对比结论		相当	相当

根据表 9.2.1-1,验收监测期间,本项目车间废水排口中总磷、总氮浓度与自来水 实测总磷、总氮浓度相当,表明本项目生产过程未向废水中排放氮、磷元素,满足环 评要求。

厂内污水处理站节点水质监测结果见表 9.2.1-2。

表 9.2.1-2 厂内污水处理站节点水质监测结果表 单位: mg/L

监测,	点位	厂内剂	5水处理 节池 1			气池出 调节池		厌氧段 COD 去 除效率 (%)			调节	7池 2		一			总排	非口			好氧段 COD 去 除效率 (%)
监测时间	频次	pН	COD	SS	pН	COD	SS	/	pН	COD	SS	总磷	总氮	氨氮	pН	COD	SS	总磷	总氮	氨氮	/
	第1次																				
2023.05.05	第2次																				
2023.03.03	第3次																				
	第4次																				
	第1次																				
2023.05.12	第2次																				
2023.03.12	第 3 次																				
	第4次																				
平均值	平均值																				
浓度范围	最小值																				
	最大值																				
标准图	 																				
达标性	青况																				

根据表 9.2.1-2,本项目验收监测期间,厂区污水处理站厌氧段 COD 去除率为 49.04~50.35%,好氧段 COD 去除率为 95.39~96.11%。总排口的 pH、COD、SS、TP、TN、氨氮浓度均能满足东桥污水处理厂接管标准要求。

9.2.2 废气

(1) 有组织排放

污染物监测结果见表 9.2.2-1~8。

表 9.2.2-1 排气筒 DA010 监测结果表

Ŋ	页目	单位		2023	.05.15	g Diroto III		2023.	.05.16			
处理	里装置	/				1# "过滤器	F7+活性炭"				世 界	
排气	筒编号	/				DA	.010				- 排放标准	
排气	筒高度	m				1	17					
采柱	羊位置	/			1# "	过滤器 F7+>	舌性炭"装置:	进口			/	
检测	孙项目	/	第1次	第2次	第 3 次	均值	第1次	第2次	第 3 次	均值	/	
甲醇	排放浓度	mg/m ³										
中時	排放速率	kg/h										
NMHC	排放浓度	mg/m ³										
NIVINC	排放速率	kg/h										
TVOC	排放浓度	mg/m ³										
1000	排放速率	kg/h										
采柱	羊位置	/										
检测	项目	/										
甲醇	排放浓度	mg/m ³										
中時	排放速率	kg/h										
NMHC	排放浓度	mg/m ³										
INIVITIC	排放速率	kg/h										
TVOC	排放浓度	mg/m ³										
1 1 0 0 0	排放速率	kg/h										
甲醇	去除效率	%										
NMHC	去除效率	%										
-	排放达标情况											

经对标,DA010 排气筒甲醇、NMHC、TVOC 排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2 排放限值要求。由于处理装置进口的初始浓度较低,废气处理装置的去除效率偏低。

表 9.2.2-2 排气筒 DA011 监测结果表

Ŋ		单位		2023	.05.15	4 D / X 011 <u>III</u>		2023.	.05.16		
处理	型装置	/				2# "过滤器	F7+活性炭"				_ - 排放标准
排气	筒编号	/				DA	A 011				一 排放你准
排气	筒高度	m					17				
采样	羊位置	/			2# "	过滤器 F7+>	舌性炭"装置	进口			/
检测	N项目 	/	第1次	1 次 第 2 次 第 3 次 均值 第 1 次 第 2 次 第 3 次 均值							
甲苯	排放浓度	mg/m ³									/
17	排放速率	kg/h									/
乙醇	排放浓度	mg/m ³									/
	排放速率	kg/h									/
甲醇	排放浓度	mg/m ³									
1. 由于	排放速率	kg/h									/
DMF	排放浓度	mg/m ³									/
DIVII	排放速率	kg/h									/
乙酸乙酯	排放浓度	mg/m ³									/
乙敗乙間	排放速率	kg/h									/
二氯甲烷	排放浓度	mg/m ³									/
一家甲烷	排放速率	kg/h									/
丙酮	排放浓度	mg/m ³									/
[7] [1]	排放速率	kg/h									/
颗粒物	排放浓度	mg/m ³									/
林外化初	排放速率	kg/h									/
NMHC	排放浓度	mg/m ³									/
INIVINC	排放速率	kg/h									/

Ŋ	 页目	单位	2023.05.15	2023.05.16	
处理	里装置	/	2# "	过滤器 F7+活性炭"	+11->-4>>>>
排气	筒编号	/		DA011	排放标准
排气	筒高度	m		17	
TVOC	排放浓度	mg/m ³			/
TVOC	排放速率	kg/h			/
采木	羊位置	/			/
检测	则项目	/			/
甲苯	排放浓度	mg/m ³			20
中本	排放速率	kg/h			/
フェウ	排放浓度	mg/m ³			/
乙醇	排放速率	kg/h			/
口無片	排放浓度	mg/m ³			50
甲醇	排放速率	kg/h			/
DMF	排放浓度	mg/m ³			30
DMF	排放速率	kg/h			0.54
フェシフェル	排放浓度	mg/m ³			40
乙酸乙酯	排放速率	kg/h			/
一层田岭	排放浓度	mg/m ³			20
二氯甲烷	排放速率	kg/h			/
11 1111	排放浓度	mg/m ³			40
丙酮	排放速率	kg/h			/
田石小子小	排放浓度	mg/m ³			10
颗粒物	排放速率	kg/h			/
NMHC	排放浓度	mg/m ³			60

Ŋ	·····································	单位		2023	.05.15			2023	.05.16		
处理	製装置	/				2# "过滤器	F7+活性炭"				排放标准
排气	筒编号	/	<u> </u>			DA	.011				1分形以外作
排气	筒高度	m				1	.7				
	排放速率	kg/h									/
TVOC	排放浓度	mg/m ³									100
1 voc	排放速率	kg/h									/
甲苯	去除效率	%									/
乙醇	去除效率	%									/
甲醇	去除效率	%	<u> </u>								/
DMF	去除效率	%	<u> </u>								/
乙酸乙酯	去除效率	%	<u> </u>								/
二氯甲烷	去除效率	%	<u> </u>								/
丙酮	去除效率	%	<u> </u>								/
颗粒物	去除效率	%	<u> </u>								/
NMHC	去除效率	%									/
检测	项目	/									
臭气浓度	排放浓度	无量纲									/
	非放达标情况		达标	达标	达标	达标	达标	达标	达标	达标	/

经对标,DA011 排气筒甲苯、甲醇、乙酸乙酯、二氯甲烷、丙酮、NMHC、TVOC、颗粒物、臭气浓度排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2 排放限值要求,DMF 排放浓度、排放速率满足江苏省《化学工业挥发性有机物排放标准》(DB32/3151-2016)中表 1 排放限值要求。由于处理装置进口的初始浓度较低,废气处理装置对部分污染物的去除效率偏低。

表 9.2.2-3 排气筒 DA012 监测结果表

Ŋ		单位		2023	.05.15	н Биота ш		2023.	05.16		
处理	型装置	/				3# "过滤器]	F7+活性炭"				#####################################
排气	筒编号	/				DA	012				排放标准
排气	筒高度	m				1	7				
采样	羊位置	/			3# "	'过滤器 F7+活	5性炭"装置运	<u></u> 世口			/
检测	1)项目	/	第1次	1次 第2次 第3次 均值 第1次 第2次 第3次 均值							
甲苯	排放浓度	mg/m ³									
1 / 4*	排放速率	kg/h									/
乙醇	排放浓度	mg/m ³									/
	排放速率	kg/h									/
甲醇	排放浓度	mg/m ³									
77. 117	排放速率	kg/h									/
DMF	排放浓度	mg/m ³									/
DIVII	排放速率	kg/h									/
乙酸乙酯	排放浓度	mg/m ³									/
乙敗乙間	排放速率	kg/h									/
二氯甲烷	排放浓度	mg/m ³									/
一系「丁儿	排放速率	kg/h									/
丙酮	排放浓度	mg/m ³									/
	排放速率	kg/h									/
NMHC	排放浓度	mg/m ³									/
INIVIEC	排放速率	kg/h									/
TVOC	排放浓度	mg/m ³									/
1 1 0 0 0	排放速率	kg/h									/

邛	· 有目	单位		2023.	05.15			2023.	05.16		
处理	型装置	/				3# "过滤器	F7+活性炭"				_ _ 排放标准
排气1	筒编号	/				DA	.012				一 升小人作作
排气	筒高度	m				1	17				
采柏	羊位置	/				DA012 排	卡 气筒出口		, 		/
检测	1项目	/	第1次	1次 第2次 第3次 均值 第1次 第2次 第3次 均值							
甲苯	排放浓度	mg/m ³									
77年	排放速率	kg/h									
乙醇	排放浓度	mg/m ³									/
乙肝	排放速率	kg/h									/
甲醇	排放浓度	mg/m^3									50
下时	排放速率	kg/h									/
DMF	排放浓度	mg/m^3									30
DML	排放速率	kg/h									0.54
乙酸乙酯	排放浓度	mg/m ³									40
乙胺乙脂	排放速率	kg/h									/
二氯甲烷	排放浓度	mg/m ³									20
一家甲烷	排放速率	kg/h									/
万酮	排放浓度	mg/m ³									40
	排放速率	kg/h									/
NMHC	排放浓度	mg/m ³									60
NIVIAC	排放速率	kg/h									/
TVOC	排放浓度	mg/m ³									100
IVOC	排放速率	kg/h									/
甲苯	去除效率	%									/

功		单位	2023.05.15			2023.	05.16		
处理	製装置	/		3# "过滤器]	F7+活性炭"				 排放标准
排气	筒编号	/		DA	012				1 11F/队/你任
排气	筒高度	m		1	7				
乙醇	去除效率	%							/
甲醇	去除效率	%							/
DMF	去除效率	%							
乙酸乙酯	去除效率	%							/
二氯甲烷	去除效率	%							/
丙酮	去除效率	%							/
NMHC	去除效率	%							/
检测	项目	/							
臭气浓度	排放浓度	无量纲							/
丰	非放达标情况								/

经对标,DA012 排气筒甲苯、甲醇、乙酸乙酯、二氯甲烷、丙酮、NMHC、TVOC、臭气浓度排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2 排放限值要求,DMF 排放浓度、排放速率满足江苏省《化学工业挥发性有机物排放标准》(DB32/3151-2016)中表 1 排放限值要求。由于处理装置进口的初始浓度较低,废气处理装置对部分污染物的去除效率偏低。

表 9.2.2-4 排气筒 DA013 监测结果表

Į	 页目	单位		2023	.05.18	i DAUIS III		2023	.05.19		
处理	里装置	/				4# "过滤器	F7+活性炭"				
排气	筒编号	/				DA	A013				一 排放标准
排气	筒高度	m]	17				
采札	羊位置	/			4# "	'过滤器 F7+	活性炭"装置	进口			/
检测	则项目	/	第1次	第2次	第 3 次	均值	第1次	第2次	第 3 次	均值	/
乙醇	排放浓度	mg/m ³									/
乙时	排放速率	kg/h									/
丙酮	排放浓度	mg/m ³									/
內間	排放速率	kg/h									/
颗粒物	排放浓度	mg/m ³									/
林以本丛书》	排放速率	kg/h									/
NMHC	排放浓度	mg/m ³									/
NIVITC	排放速率	kg/h									/
TVOC	排放浓度	mg/m ³									
1000	排放速率	kg/h									
采札	羊位置	/									/
检测	则项目	/									/
乙醇	排放浓度	mg/m ³									/
□ □ □ □	排放速率	kg/h									/
万酮	排放浓度	mg/m ³									40
门間	排放速率	kg/h	_								/
颗粒物	排放浓度	mg/m ³									10
林以本丛书》	排放速率	kg/h									/

Ţ	页目	单位	2023.05.18		2023.05.19				
处理	里装置	/	4# "过滤器 F7+活性炭"						
排气	筒编号	/		排放标准					
排气	筒高度	m		17					
NMHC	排放浓度	mg/m ³				60			
NIVINC	排放速率	kg/h				/			
TVOC	排放浓度	mg/m ³				100			
IVOC	排放速率	kg/h				/			
乙醇	去除效率	%				/			
丙酮	去除效率	%				/			
颗粒物	去除效率	%				/			
NMHC	去除效率	%							
	排放达标情况					/			

经对标,DA013 排气筒丙酮、NMHC、TVOC、颗粒物排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2 排放限值要求。由于处理装置进口的初始浓度较低,废气处理装置对部分污染物的去除效率偏低。

表 9.2.2-5 排气筒 DA014 监测结果表

功	間	单位	2023.05.18 2023.05.19							
处理	型装置	/	5# "过滤器 F7+活性炭"							排放标准
排气	筒编号	/			DA	014				计形以外化
排气	筒高度	m			1	7				
采档	羊位置	/			DA014 排	气筒出口				/
检测	项目	/								/
甲苯	排放浓度	mg/m ³								20
中本	排放速率	kg/h								/

Ŋ		单位	2023.05.18	2023.05.19				
处理		/	5# '	"过滤器 F7+活性炭"				
排气	筒编号	/		DA014	排放标准			
排气	筒高度	m	17					
乙醇	排放浓度	mg/m ³			/			
乙时	排放速率	kg/h			/			
甲醇	排放浓度	mg/m ³			50			
中野	排放速率	kg/h			/			
乙酸乙酯	排放浓度	mg/m ³			40			
乙段乙間	排放速率	kg/h			/			
二氯甲烷	排放浓度	mg/m ³			20			
一就甲烷	排放速率	kg/h			/			
丙酮	排放浓度	mg/m ³			40			
门門	排放速率	kg/h			/			
NMHC	排放浓度	mg/m ³			60			
NIVITC	排放速率	kg/h			/			
颗粒物	排放浓度	mg/m ³			10			
林从在工行	排放速率	kg/h			/			
TVOC	排放浓度	mg/m ³			100			
TVOC	排放速率	kg/h			/			
检测	项目	/			/			
臭气浓度	排放浓度	无量纲			1000			
1	非放达标情况							

表 9.2.2-6 排气筒 DA014 监测结果表 (DMF)

					311 41:3						_
	项目	单位		2023.05.15 2023.05.16							
,	处理装置	/		5# "过滤器 F7+活性炭"							
捐	气筒编号	/		DA014							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
抖	气筒高度	m		17]
3	采样位置	/				DA014 排	气筒出口				/
7	检测项目	/	第1次	第 2 次	第 3 次	均值	第1次	第 2 次	第 3 次	均值	/
DMF	排放浓度	mg/m ³									30
DML	排放速率	kg/h									0.54

经对标,DA014 排气筒甲苯、甲醇、乙酸乙酯、二氯甲烷、丙酮、NMHC、TVOC、臭气浓度排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2 排放限值要求,DMF 排放浓度、排放速率满足江苏省《化学工业挥发性有机物排放标准》(DB32/3151-2016)中表 1 排放限值要求。

表 9.2.2-7 排气筒 DA015 监测结果表

Ŋ	页目	单位		2023.	.05.18			2023.	.05.19		
处理	里装置	/	6# "过滤器 F7+活性炭"								
排气筒编号 /						DA	.015				分析双价准
排气	筒高度	m		17							
采样	羊位置	/		DA015 排气筒出口							
检测	项目	/	第1次	第2次	第 3 次	均值	第1次	第 2 次	第 3 次	均值	/
乙醇	排放浓度	mg/m ³									/
乙籽	排放速率	kg/h									/
丙酮	排放浓度	mg/m ³									40
	排放速率	kg/h									
NMHC	排放浓度	mg/m ³									60

Ŋ	5目	单位	202	3.05.18		2023.	05.19		
处理	处理装置 /		6# "过滤器 F7+活性炭"						
排气筒编号 /				DA015					
排气	筒高度	m		17					
	排放速率	kg/h							/
颗粒物	排放浓度	mg/m ³							10
林贝朴亚书/J	排放速率	kg/h							/
TVOC	排放浓度	mg/m ³							100
IVOC	排放速率	kg/h							
-	排放达标情况								/

经对标,DA015 排气筒丙酮、NMHC、TVOC、颗粒物排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2 排放限值要求。

表 9.2.2-8 排气筒 DA016 监测结果表

Ŋ	页目	单位		2023	.05.05			2023.	.05.12		
处理	里装置	/	18# "过滤器 F7+活性炭"								#####################################
排气筒编号 / DA016								排放标准			
排气	筒高度	m		20							
采样	羊位置	/			18#	"过滤器 F7+	活性炭"装置	进口			/
检测	项目	/	第1次	第2次	第 3 次	均值	第1次	第 2 次	第 3 次	均值	/
乙醇	排放浓度	mg/m ³									/
→ 四野	排放速率	kg/h									/
丙酮	排放浓度	mg/m ³									/
	排放速率	kg/h									
颗粒物	排放浓度	mg/m ³									/

Ŋ		单位	2023.05.05	2023.05.12				
处理	製装置	/	18# ")	过滤器 F7+活性炭"				
排气	筒编号	/		DA016	排放标准			
排气	筒高度	m	20					
	排放速率	kg/h			/			
NMHC	排放浓度	mg/m ³			/			
NIVITC	排放速率	kg/h			/			
TVOC	排放浓度	mg/m ³			/			
1,000	排放速率	kg/h			/			
采样	羊位置	/			/			
检测	削项目	/			/			
乙醇	排放浓度	mg/m ³			/			
△ 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	排放速率	kg/h			/			
丙酮	排放浓度	mg/m ³			40			
闪阳	排放速率	kg/h			/			
颗粒物	排放浓度	mg/m ³			10			
秋红初	排放速率	kg/h			/			
NMHC	排放浓度	mg/m ³			60			
NIVITC	排放速率	kg/h			/			
TVOC	排放浓度	mg/m ³			100			
TVOC	排放速率	kg/h			/			
乙醇	去除效率	%			/			
丙酮	去除效率	%			/			
颗粒物	去除效率	%			/			
NMHC	去除效率	%			/			

项目	单位	2023.05.05 2023.05.12							
处理装置	/	18# "过滤器	18# "过滤器 F7+活性炭"						
排气筒编号	/	DA	DA016						
排气筒高度	m		20						
排放达标情况									

经对标,DA016 排气筒丙酮、NMHC、TVOC、颗粒物排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表 1、表 2 排放限值要求。由于处理装置进口的初始浓度较低,废气处理装置对部分污染物的去除效率偏低。

(2) 无组织监测

表 9.2.2-9 无组织监测结果表

公 加·安 口	以 井口 田 田	采样点位	检测	结果(小时均值	,"ND"表示未检	出)	长水田
检测项目	采样日期	术件从位	第一次	第二次	第三次	第四次	标准限值
		上风向G1					
	2023.05.05	下风向G2					
	2023.05.05	下风向G3					
总悬浮颗粒物		下风向G4					1
$(\mu g/m^3)$	2023.05.12	上风向G1					/
		下风向G2					
		下风向G3					
		下风向G4					
		上风向G1					
	2023.05.05	下风向G2					
非甲烷总烃 (mg/m³) —	2023.03.03	下风向G3					4.0
		下风向G4					
	2023.05.12	上风向G1					

	公长口和	双环卡萨		0/15人。1905年19月1日 1905年 190	,"ND"表示未检	出)	长米伊
检测项目	采样日期	采样点位	第一次	第二次	第三次	第四次	标准限值
		下风向G2					
		下风向G3					
		下风向G4					
		上风向G1					
	2023.05.05	下风向G2					
	2023.03.03	下风向G3					
臭气浓度		下风向G4					20
(无量纲)	2023.05.12	上风向G1					7 20
		下风向G2					
		下风向G3					
		下风向G4					
	2023.05.05	上风向G1					_
		下风向G2					
	2023.03.03	下风向G3					
DMF		下风向G4					0.40
DML		上风向G1					0.40
	2023.05.12	下风向G2					
	2023.03.12	下风向G3					
		下风向G4					
	2023.05.18	工程楼门口外1米 G5					
非甲烷总烃	2023.03.18	研发楼门口外1米 G6					6
(mg/m^3)	2022 05 10	工程楼门口外1米 G5					6
	2023.05.19	研发楼门口外1米 G6					

根据监测结果,厂界无组织监控点臭气浓度、DMF监测浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021),NMHC监测浓度满足江苏省《化学工业挥发性有机物排放标准》(DB32/3151-2016),《制药工业大气污染物排放标准》(DB32/4042-2021)未对厂界颗粒物监测浓度提出控制要求;厂内无组织监控点NMHC监测浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)。

9.2.3 噪声

厂界噪声监测结果见表 9.2.3。

监测	时间	2023.05.18		2023.05.19		执行	标准	上 - 是否达标
检测点位置	单位	昼间	夜间	昼间	夜间	昼间	夜间	定首及你
N1 东边界外 1m	dB (A)	58.5	48.4	58.6	48.4			是
N2 南边界外 1m	dB (A)	60.6	49.2	60.4	40.6	65	55	是
N3 西边界外 1m	dB (A)	57.7	48.3	58.2	47.7	0.5	33	是
N4 北边界外 1m	dB (A)	56.9	46.6	57.3	46.9			是

表 9.2.3 噪声验收监测结果表

根据表 9.2.3, 厂界噪声均能达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准限值要求。

9.2.4 固废

根据"4.1.4"章节,项目产生的固体废物均得到妥善处置;固体废物的处置处理措施切实有效,实现了固体废物处置的"减量化、无害化、资源化"目标,对环境影响较小。

9.2.5 污染物排放总量核算

(1) 废水污染物排放总量

全厂废水污染物的排放总量根据监测结果(即平均浓度)与废水年排放总量(t/a)计算。

据统计,调试运行期间(2023.05.03~05.14,12天)废水排放量约9340t,推算全年的废水量约256850t。

表 9.2.5-1 废水污染物排放量核算表

控制指标	平均排放浓度(mg/L)	实际年排放量(t/a)	环评核定年排放量(t/a)	评价结论
废水量				满足要求
COD				满足要求
SS				满足要求
NH ₃ -N				满足要求
TN				满足要求
TP				满足要求

根据表 9.2.5-1,全厂废水污染物中 COD、SS、NH₃-N、TN、TP 等污染物排放总量能够满足环境影响报告表及环评批复许可的排放量要求、满足公司排污许可证许可年排放量限值。

(2) 废气污染物排放总量

根据监测结果(即平均排放速率)与实际排放时间计算各排气筒涉及的污染物排放总量。核算污染物排放总量见表 9.2.5-2。

表 9.2.5-2 废气污染物排放量核算表

污染物	排气筒	平均排放速率(kg/h)	排放时间(h/a)	实际年排放量(t/a)	实际年排放量合计 (t/a)	本项目总量指标 (t/a)	评价结论
	DA011						
	DA013						
颗粒物	DA014						满足要求
	DA015						
	DA016						
	DA011						
乙醇	DA012						满足要求
	DA013						

污染物	排气筒	平均排放速率(kg/h)	排放时间(h/a)	实际年排放量(t/a)	实际年排放量合计 (t/a)	本项目总量指标 (t/a)	评价结论
	DA014						
	DA015						
	DA016						
	DA010						
甲醇	DA011						满足要求
十 1 日子	DA012						俩疋女不
	DA014						
	DA011						
DMF	DA012						满足要求
	DA014						
	DA011						
乙酸乙酯	DA012						满足要求
	DA014						
	DA011						
二氯甲烷	DA012						满足要求
	DA014						
	DA011						
甲苯	DA012						满足要求
	DA014						
	DA011						
	DA012						
丙酮	DA013						满足要求
	DA014						
	DA015						

污染物	排气筒	平均排放速率(kg/h)	排放时间(h/a)	实际年排放量(t/a)	实际年排放量合计 (t/a)	本项目总量指标 (t/a)	评价结论
	DA016						
	DA010						
	DA011						
	DA012						
非甲烷总烃	DA013						满足要求
	DA014						
	DA015						
	DA016						

注: 废气污染物未检出以 0 计。

根据验收监测数据进行测算,验收项目废气污染物排放总量能够满足本项目环境影响报告表及环评批复许可的排放量要求。

9.3 环评批复执行情况检查

本项目环评审批意见执行情况见表9.3。

表 9.3 环评批复检查情况

序号	环评批复要求	落实情况	结论
1	厂区应实行"雨污分流、清污分流",工艺水制备浓水设备清洗水、洗瓶水(均不得含氮磷)经收集处理后与生活污水一起经市政污水管网接入苏州市相城区东桥集中污水处理)处理,排放执行苏州市相城区东桥集中污水处理厂接管标准;	质,收集处理后与生活污水一起经市政污水管网接入苏州市相城区东桥集中污水处理,执行苏州市相城区东桥集中污水处理厂接管标准;	落实
2		序产生的废气经收集处理后分别通过17米高DA011、DA012排气筒排放,湿法造粒干法造粒、直接混合、冻干等工序产生的废气经收集处理后分别通过17米高DA013~DA015以及20米高DA016排气;根据验收监测结果,各污染物可以满足《制药工业大气污染物排放标准》(DB32/4042-2021)表1、表2标准限值,DMF可以满足《化学工业挥发性有机物排放标准》(DB32/3151-2016)表1标准限值;本项目通过管道、局部集气罩的方式收集废气,废气收集效率、处理效率满	落实
	厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准,必须采取防振降噪措施;	本项目采取了隔声减振、合理布局等降噪措施;根据验收监测结果,厂界噪声可以满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准;	菠尔
4	危险废物、一般固体废弃物、生活垃圾分类收集。项目实施后产生的危险废物种类为:过滤残渣(271-001-02),分层废液、提取处理废液、浓缩废液、废母液(271-002-02),化学合成设备清洗废液、制剂研发设备清洗废液、工程中心设备清洗废液(900-047-49),化学合成过滤废滤材(271-003-02),废催化剂(271-006-50)报废原药(271-005-02),废催化剂(272-005-02),实验室废液(900-047-49),废活性炭(900-039-49)。该项目应配套建设符合《危险废物贮存污染控制标准》(GB18597-2001)的危险废物贮存场所,全厂总面积不小于92.6m²,设置危险废物识别标签。按照《危险废物规范化管理指标体系》识别标签。按照《危险废物规范化管理指标体系》	本项目危险废物、一般固体废弃物、 生活垃圾分类收集。 项目产生的危险废物种类有:过滤残渣(271-001-02),分层废液、提取处理 废液、浓缩废液、废母液(271-002-02)。	落实

序号	环评批复要求	落实情况	结论
	要求加强日常管理,危险废物情况记录上应注明危险废物的名称、来源、数量特性和包装容器的类别、入库日期、存放库位、废物出库日期及接收单位名称。危险废物应该委托持有有效危险废物经营许可证且具备相应处理能力的单位进行处理,安排专人负责、全程跟踪,禁止将危险废物排放至环境中。未沾染原辅料、产品的废包装材料经收集后外售处置,一般工业固废贮存应符合《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求,一般工业固废仓库总面积不小于276.75m²。生活垃圾由环卫部门统一清运处理,不得随意扔撒或者堆放;	本项目建设了17.6m ² 的危险废物贮存场所,与公司原有危险废物贮存场所合计总面积共达92.6m ² ,;危废仓库已按《危险废物贮存污染控制标准》(GB18597-2023)要求进行了建设、完善,并按最新要求设置了危废标签;日常管理符合《危险废物规范化管理指标体系》要求,有完善的出入库记录、标签,记录危险废物的名称、来源、数量、特性和包装容器的类别、入库日期、存放库位、废物出库日期	
5	项目以厂界为起点设置100米的卫生防护距 离,卫生防护距离内不得有居民住宅等环境敏感 目标;	1) 发 100 米 1/生奶护胆累因尤居民任务	落实
6	建设单位应全面落实报告表提出的各项环境风险防范措施。在该项目实际排放污染物前,按《企事业单位和工业园区突发环境事件应急预案编制导则》(DB32/T3795-2020)完成环境风险应急预案的编制,报环保部门备案;你公司在项目设计施工建设和生产中总平面布局以及主要工艺设备、储运设施、公辅工程、污染防治设施安装、使用中涉及安全生产的应遵守设计使用规范和相关主管部门要求;应对各类环境治理设施开展安全风险辨识管控,健全内部污染防治设施稳定运行和管理责任制度,严格依据标准规范建设环境治理设施,确保环境治理设施安全、稳定、有效运行;	公司已落实报告表提出的各项环境 风险防范措施,并据此修订、备案了厂区 突发环境事件应急预案。 公司在项目设计、施工建设和生产中 总平面布局以及主要工艺设备、储运设 施、公辅工程、污染防治设施安装、使用 中涉及安全生产的均遵守了设计使用规 范和相关主管部门要求。 已健全内部污染防治设施稳定运行 和管理责任制度,严格依据标准规范建设 环境治理设施、确保环境治理设施安全	落实
1 /	按《江苏省排污口设置及规范化整治管理办法》的规定规范设置排放口及标识;按《江苏省污染源自动监控管理暂行办法》(苏环规[2011]1号)要求,安装自动监控设备及配套设施;	化整冶官埋办法》的规定设直 J 排放口及 标识, 按《江苏省污染源自动监控管理新	落实
- X	建设单位应按报告表提出的要求执行环境监测制度,按照《排污单位自行监测技术指南总则》(HJ819-2017)和行业规范编制自行监测方案并开展监测工作,监测结果及相关资料备查。	公司已按照《排污单位自行监测技术 指南总则》(HJ819-2017)和行业规范编 制自行监测方案,后续按自行监测方案开	菠 守.

10 验收监测结论

10.1 结论

10.1.1 废水监测结果

全厂废水总排口各污染物浓度均能够满足东桥污水处理厂接管限值要求。

车间废水排口中总磷、总氮浓度与自来水实测总磷、总氮浓度相当,表明本项目 生产过程未向生产废水中额外投加氮磷元素,满足环评要求。

10.1.2 废气监测结果

除乙腈尚无国家发布的监测方法故未进行监测外,根据监测结果: DA010排气筒甲 醇、NMHC、TVOC排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表1、表2排放限值要求; **DA011**排气筒甲苯、甲醇、乙酸乙酯、二氯甲烷、丙酮、 NMHC、TVOC、颗粒物、臭气浓度排放浓度满足江苏省《制药工业大气污染物排放标 准》(DB32/4042-2021)表1、表2排放限值要求, DMF排放浓度、排放速率满足江苏省 《化学工业挥发性有机物排放标准》(DB32/3151-2016)中表1排放限值要求: DA012排 气筒甲苯、甲醇、乙酸乙酯、二氯甲烷、丙酮、NMHC、TVOC、臭气浓度排放浓度满 足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表1、表2排放限值要求, DMF排放浓度、排放速率满足江苏省《化学工业挥发性有机物排放标准》(DB32/3151-2016) 中表1排放限值要求; DA013排气筒丙酮、NMHC、TVOC、颗粒物排放浓度满足 江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表1、表2排放限值要求; DA014排气筒甲苯、甲醇、乙酸乙酯、二氯甲烷、丙酮、NMHC、TVOC、臭气浓度排放 浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表1、表2排放限 值要求, DMF排放浓度、排放速率满足江苏省《化学工业挥发性有机物排放标准》 (DB32/3151-2016) 中表1排放限值要求: **DA015**排气筒丙酮、NMHC、TVOC、颗粒物 排放浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)表1、表2排 放限值要求; DA016排气筒丙酮、NMHC、TVOC、颗粒物排放浓度满足江苏省《制药 工业大气污染物排放标准》(DB32/4042-2021)表1、表2排放限值要求。

根据监测结果,厂界无组织监控点臭气浓度、DMF监测浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021),NMHC监测浓度满足江苏省《化学工业挥发性有机物排放标准》(DB32/3151-2016),《制药工业大气污染物排放标准》(DB32/4042-2021)未对厂界颗粒物监测浓度提出控制要求;厂内无组织监控点NMHC监测浓度满足江苏省《制药工业大气污染物排放标准》(DB32/4042-2021)。

10.1.3 噪声监测结果

根据监测结果,验收监测期间,厂界噪声监测点位的昼间、夜间检测值均符合《工业企业厂界环境噪声排放标准》(GB13248-2008)3类限值要求,噪声达标排放。

10.1.4 固体废物

本项目危险废物委托有资质单位处置,一般固废外售,生活垃圾委托环卫拖运。固体废物均得到有效处置,不外排。

10.1.5 总量控制

全厂废水污染物 COD、SS、NH₃-N、TN、TP 排放总量能够满足环境影响报告表及环评批复许可的排放量要求、满足公司排污许可证许可年排放量限值。验收项目废气污染物颗粒物、乙醇、甲醇、DMF、乙酸乙酯、二氯甲烷、甲苯、丙酮、非甲烷总烃排放总量能够满足本项目环境影响报告表及环评批复许可的排放量要求。

10.2 验收项目与《建设项目竣工环境保护验收暂行办法》相符性分析

本项目验收情况与《建设项目竣工环境保护验收暂行办法》第八条的相符性分析见表 10.2。

表 10.2	本项目验收情况与验收合格要求相符性分析表
1X 1U.2	一个次日巡风间见到巡风日伯女不旧门压刀们队

序号	要求	分析	相符性
1	未按环境影响报告书(表)及其审 批部门审批决定要求建成环境保护 设施,或者环境保护设施不能与主 体工程同时投产或者使用的	本面日已按股环境影响损失及正审抄到门雷	相符
	标准、环境影响报告书(表)及其	经监测,本项目建成后,废气、废水、噪声污染物排放能够满足环境影响报告及其审批部门审批决定要求的标准要求,排放总量符合要求	相符
3	环境影响报告书(表)经批准后, 该建设项目的性质、规模、地点、 采用的生产工艺或者防治污染、防 止生态破坏的措施发生重大变动, 建设单位未重新报批环境影响报告 书(表)或者环境影响报告书 (表)未经批准的	本项目建设项目的性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的措施均未发生重大变动,不需要重新报批环境影响报告	相符
4	建设过程中造成重大环境污染未治 理完成,或者造成重大生态破坏未 恢复的	本项目建设过程未对生态环境造成重大污染	相符
5	纳入排污许可管理的建设项目,无 证排污或者不按证排污的	根据《排污许可管理条例》(中华人民共和国国务院令 第736号)、《固定污染源排污许可分类管理名录》(2019年版),已取得排污许可证	相符

6	分期建设、分期投入生产或者使用 依法应当分期验收的建设项目,其 分期建设、分期投入生产或者使用 的环境保护设施防治环境污染和生 态破坏的能力不能满足其相应主体 工程需要的		相符
7	建设单位因该建设项目违反国家和 地方环境保护法律法规受到处罚, 被责令改正,尚未改正完成的	项目自开工至今,未受到国家和地方环境保 护法律法规的处罚	相符
8	验收报告的基础资料数据明显不 实,内容存在重大缺项、遗漏,或 者验收结论不明确、不合理的	本项目基础资料数据均来自企业,且经企业 核实;验收监测委托有资质的监测单位	相符
9	其他环境保护法律法规规章等规定 不得通过环境保护验收的	不涉及	相符

根据表 10.2 分析,本项目建设情况符合《建设项目竣工环境保护验收暂行办法》第八条之规定,不存在不合格的情形。

10.3 建议

- (1) 加强环境风险防范,加强生产原辅材料的使用和贮存过程的管理。
- (2)加强各类环保设施的日常维护和管理,确保处理设施的长期稳定运行、各项污染物达标排放。
- (3)加强厂区危险废物的贮存和处理、处置全过程管理,以及危险废物暂存场所的管理和维护。
- (4)按环评文件中营运期环境监测计划,以及《排污单位自行监测技术指南 总则》 (HJ819-2017)等相关文件的要求切实做好污水、废气、噪声的日常监测工作。

11 建设项目竣工环境保护"三同时"验收登记表

	项目名称	苏州二叶	制药有限公司]全球 CMC 生	产及研发中	中心项目	项目代	代码	/	建设地	点 苏州市	相城区黄埭 民路2号	镇东桥安
	行业类别 (分类管理名录)	ç		区、研发(实验 药品制剂制造			建设性	上质	□新建 ☑改扩建 □搬迁(技ī		项目厂区 经度/约		0°29Έ、 1°25′N
	设计生产能力		ì	羊见表 3.2-2			实际生产	^r 能力	与环评设计一致	环评单位	立 江苏虹	善工程科技	有限公司
	环评文件审批机关		苏州	市生态环境局	ij		审批文	C号	苏环建[2021]07 第 0032 号	环评文件 型	圿	境影响报告	表
	开工日期		2	022年1月			竣工日	期	2023年3月	排污许可 申领时		2023年7月	1
建设项目	环保设施设计单位			公司/宜兴市鼎 【区东桥集中》		备有限公	环保设施说	医工单位	江苏苏净工程建设 有限公司/宜兴市鼎 浩环保设备有限公司/苏州市相城区东 桥集中污水处理厂	本工程排		913205001377026284001P	
	验收单位			自主验收			环保设施监	监测单位	江苏裕和检测技术 有限公司/泰科检测 科技江苏有限公司	验收监测 工况		见表 9.1	
	投资总概算 (万元)			11000			环保投资总概算(万元)		550	所占比((%)	·	5	
	实际总投资 (万元)			11000			实际环保投资	(万元)	550	所占比例 (%)	列	5	
	废水治理(万元)	10	废气治理 (万元)	510	噪声治理 (万元)	15	固体废物 (万元		/	绿化及生 (万元)		其他 (万元)	15
	新增废水处理设施 能力			/			新增废气处理		18 套废气处理装置 6 根排气筒	年平均工 时	作	300 天	
	运营单位		苏州二叶制	药有限公司		(单位社会统一信 (或组织机构代码		913205001377026284	验收时间	可 20	23.03~2023	3.09
污染 物排 放达	污染物	原有排放 量(1)	本期工程 实际排放 浓度(2)	本期工程允 许排放浓度 (3)	本期工 程产生 量(4)	本期工 程自身 削减量 (5)	本期工程实际排放量(6)	本期工程 核定排放 总量(7)	本期工程"以新带 老"削减量(8)	全厂实 际排放 总量 (9)	全厂核定排 放总量 (10)	区域平衡 替代削减 量(11)	排放增 减量 (12)
标与	废水量											/	/
总量	化学需氧量											/	/
控制	悬浮物											/	/
工	氨氮											/	/
业産	总氮											/	/
	总磷											/	/

目详	废气							/	/
填	颗粒物							/	/
)	乙醇							/	/
	甲醇							/	/
	DMF							/	/
	乙酸乙酯	i						/	/
	二氯甲烷	1						/	/
	乙腈							/	/
	甲苯							/	/
	丙酮							/	/
	非甲烷总统	经						/	/
	与项目有关	/	•					/	/
	的其他特征	/						/	/
	污染物	/	•					/	/

注: 1、排放增减量: (+)表示增加, (-)表示减少。2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1)。3、计量单位: 废水排放量—万吨/年; 废气排放量—万标立方米/年; 工业固体废物排放量—万吨/年; 水污染物排放浓度—毫克/升(粪大肠菌群为个/升); 大气污染物排放浓度—毫克/立方米; 水污染物排放量—吨/年; 大气污染物排放量—吨/年。